
brainGraph User Guide
Version 3.0.0

Christopher G. Watson, Ph.D.

Dept. of Pediatrics, Children’s Learning Institute
University of Texas Health Science Center at Houston

December 31, 2020

Table of Contents

List of Tables . viii

Preface . ix

I Introductory Material 1

Chapter 1: Installation and Requirements . 2
1.1: System Requirements . 2
1.2: GUI-related note . 3
1.3: OS-specific instructions and notes . 3

1.3.1 Preferred method, any OS . 3
1.3.2 Linux . 3
1.3.3 Mac . 4
1.3.4 Windows . 4

1.4: Compatible neuroimaging software . 4
1.5: Compatible atlases . 5

1.5.1 Using your own atlas: required format . 6
1.5.2 Atlases to be added (potential) . 6

Chapter 2: Getting Help and Other Resources . 7
2.1: Getting help . 7
2.2: Learning resources . 7

2.2.1 Graph theory . 7
2.2.2 R programming . 8

2.3: Other R packages . 8
2.3.1 Other network-related packages . 8
2.3.2 Medical Imaging Task View . 8
2.3.3 Neuroconductor . 8
2.3.4 Implementations of popular MRI software . 8
2.3.5 Other . 9

2.4: Validation of graph metrics . 9

Chapter 3: Getting data from Freesurfer and FSL . 11
3.1: Structural data from Freesurfer . 11
3.2: Tractography . 11

3.2.1 Create/convert parcellated volume . 12
3.2.2 Get individual seed ROI’s . 12

II brainGraph Basics 14

Chapter 4: Overview of the brainGraph Package . 15
4.1: Concepts/workflow . 15

ii

4.1.1 “Step 0”: Setting up data and scripts . 15
4.1.2 Step 1: Import data and create connectivity matrices 15
4.1.3 Step 2: Create graphs and calculate metrics . 16
4.1.4 Step 3: Perform group analyses . 16
4.1.5 Step 4: Visualize results . 16

4.2: Functions . 16
4.2.1 Graph creation . 16
4.2.2 Graph metrics . 17
4.2.3 Group comparison . 17
4.2.4 Visualization . 18
4.2.5 Random graphs, small world, and rich club . 18
4.2.6 Generic methods . 18

Chapter 5: Getting started . 20
5.1: Setting up files for your project . 20

5.1.1 Project scripts . 20
5.1.2 Package global options . 21
5.1.3 Loading required packages . 22
5.1.4 Project data . 22
5.1.5 Data Compatibility . 23

5.2: Graph object attributes . 23
5.2.1 The summary method . 23
5.2.2 Graph-level attributes . 25
5.2.3 Vertex-level attributes . 26
5.2.4 Edge-level attributes . 26

5.3: Community detection . 27
5.4: Plotting . 27

5.4.1 MNI152 template . 27
5.4.2 Axial . 28
5.4.3 Sagittal . 28
5.4.4 Circular . 29

III Graph Creation 31

Chapter 6: Structural covariance networks . 32
6.1: Overview . 32

6.1.1 Complete example . 32
6.2: Import the data . 33

6.2.1 Custom atlas . 34
6.3: Model residuals . 34

6.3.1 Function arguments . 34
6.3.2 Return value . 35
6.3.3 Example . 35

6.4: Data checking . 35
6.4.1 Summary . 35
6.4.2 Plot . 36

6.5: Correlation Matrix and Graph Creation . 37
6.5.1 Excluding regions . 37
6.5.2 Graph creation . 37

6.6: Getting measures of interest . 38
6.7: Long and wide data tables . 40

Chapter 7: Tractography and fMRI . 41

iii

7.1: Setting up . 41
7.1.1 Tractography . 41
7.1.2 fMRI . 42

7.2: Import, normalize, and filter matrices for all subjects . 42
7.2.1 Function arguments . 43
7.2.2 Return value . 44
7.2.3 Code example . 45
7.2.4 Applying the same thresholds to other matrices . 45

7.3: Graph creation . 45
7.4: Graph- and vertex-level measures . 47
7.5: Example commands . 47

IV Group Analyses: GLM-based 49

Chapter 8: Vertex-wise group analysis (GLM) . 50
8.1: Function arguments . 50

8.1.1 Mandatory . 51
8.1.2 Optional . 51
8.1.3 Unnamed: design matrix arguments . 52

8.2: Return object . 53
8.2.1 Return object: DT . 55

8.3: Tutorial: design matrix coding . 56
8.3.1 Suggested reading . 56
8.3.2 Dummy coding . 56
8.3.3 Cell means coding . 58
8.3.4 Effects coding . 58

8.4: Examples . 60
8.4.1 Two-group difference . 60
8.4.2 Two-group difference adjusted for covariate . 61
8.4.3 Two-group difference with continuous covariate interaction 61
8.4.4 Two-way between subjects ANOVA: 2x2 . 62
8.4.5 Two-way between subjects ANOVA: 2x3 . 63
8.4.6 Three-way between subjects ANOVA: 2x2x2 . 66

8.5: Permutation testing . 66
8.5.1 Example . 67

8.6: Plotting LM diagnostics . 67
8.7: Create a graph of the results . 69
8.8: Plotting a graph of the results . 69

Chapter 9: Multi-threshold permutation correction . 71
9.1: Background . 71

9.1.1 MTPC procedure . 71
9.2: Function arguments . 72

9.2.1 Mandatory . 72
9.2.2 Optional . 72
9.2.3 Unnamed . 73

9.3: Return value . 73
9.4: Code example . 74
9.5: Plotting the statistics . 77
9.6: Create a graph of the results . 78
9.7: Plotting a graph of the results . 79

Chapter 10: Network-based statistic (NBS) . 81

iv

10.1: Background . 81
10.2: Function arguments . 81
10.3: Return value . 82
10.4: Code example . 83
10.5: Creating a graph of the results . 84
10.6: Plotting the results . 85
10.7: Testing . 85

Chapter 11: Graph- and vertex-level mediation analysis 87
11.1: Background . 87

11.1.1 Suggested reading . 88
11.2: Notation . 88
11.3: Function arguments . 88

11.3.1 Mandatory . 89
11.3.2 Optional . 89

11.4: Return value . 90
11.5: Code example . 91

11.5.1 Printing a summary . 92
11.6: Create a graph of the results . 94
11.7: Plot a graph of the results . 94
11.8: Benchmarks . 95

V Group Analyses: Other 96

Chapter 12: Random graphs, small world, and rich-club 97
12.1: Random graph generation . 97

12.1.1 Simple random graph generation . 97
12.1.2 Control for clustering . 98
12.1.3 Random covariance matrices . 98

12.2: Small-worldness . 99
12.3: Rich-club Analysis . 102

12.3.1 Rich-core . 102
12.3.2 Rich-club plots . 102
12.3.3 Rich-club attributes . 102

12.4: Single-subject networks . 103

Chapter 13: Bootstrapping and permutation testing . 105
13.1: Bootstrapping . 105

13.1.1 Function arguments . 105
13.1.2 Return value . 106
13.1.3 Code example . 106
13.1.4 Plotting the results . 107

13.2: Permutation testing . 107
13.2.1 Function arguments . 107
13.2.2 Return value . 108
13.2.3 Graph-level . 109
13.2.4 Vertex measures . 111
13.2.5 Area-under-the-curve (AUC) . 112
13.2.6 Custom function . 114

Chapter 14: Further analysis . 116
14.1: Robustness . 116

14.1.1 Targeted attack . 116
14.1.2 Random failure . 117

v

14.2: Euclidean distance . 118
14.3: Individual contributions . 119

14.3.1 Add one patient . 120
14.3.2 Leave one out . 122
14.3.3 Plot types . 122

VI Visualization 125

Chapter 15: GUI and other plotting functionality . 126
15.1: The GUI . 126

15.1.1 Orientation . 126
15.1.2 Hemi/Edges . 126
15.1.3 Annotations . 127
15.1.4 Vertex “decorations” . 127
15.1.5 Edge “decorations” . 127
15.1.6 Vertex groups . 127
15.1.7 Keyboard shortcuts . 128

15.2: Other plotting . 128
15.2.1 Adjacency matrix plots . 128
15.2.2 Plot global graph measures . 129
15.2.3 Save a three-panel plot of the brain graphs . 129
15.2.4 Save a single view for multiple brain graphs . 129
15.2.5 Plot vertex-level measures . 129
15.2.6 Plot group-wise volumetric data for ROI’s . 130
15.2.7 Save a list of graph plots . 130
15.2.8 Other visualization tools . 130

Appendices 130

Chapter A: Attributes created by set brainGraph attr 143
A.1: Graph-level . 143

A.1.1 Housekeeping . 143
A.1.2 Unweighted . 143
A.1.3 Weighted . 144

A.2: Vertex-level . 144
A.2.1 Housekeeping/Other . 144
A.2.2 Unweighted . 145
A.2.3 Weighted . 146

A.3: Edge-level . 146

Chapter B: GLM Statistics . 147
B.1: Model fitting . 147
B.2: Contrast-based statistics . 147
B.3: GLM methods . 148

B.3.1 Basic information . 149
B.3.2 Model fit statistics . 150
B.3.3 Diagnostic/Influence measures . 151
B.3.4 Other statistics . 151

Chapter C: Functions for generic data . 153

Chapter D: Benchmarks . 155
D.1: GLM-related benchmarks . 155

vi

D.1.1 Randomise . 155
D.1.2 NBS . 156
D.1.3 Mediation . 156

D.2: Random graph generation . 156

Chapter E: Computing environment . 158

vii

List of Tables

1.1 List of atlases. 5

2.1 Network packages . 8

4.1 Class names and graph creation functions. 18

8.1 GLM graph attributes. 69

9.1 MTPC graph attributes. 79

10.1 NBS graph attributes. 85

11.1 Mediation graph attributes. 94

12.1 Rich-club graph attributes. 102

D.1 Benchmarks, randomise . 155
D.2 Benchmarks, NBS . 156
D.3 Benchmarks, mediation analysis. 156

viii

Preface

brainGraph is an R package for performing graph theory analysis of brain MRI data. It started out essentially
as one long script I wrote while taking a course in Fall 2013 on the statistical analysis of network data.
Initially, the functionality was specific to cortical thickness data only (from Freesurfer), but I have since
extended it to include functionality for DTI tractography (e.g., fdt network matrix from FSL’s probtrackx2,
and matrices from PANDA (21)) and resting-state fMRI (e.g., DPABI (132) and AFNI (17)). It should work for
any data that can be represented as a connectivity matrix.
There is some plotting functionality, but it doesn’t look as “polished” as other software. (However, it looks
comparable to figures I have seen in publications; see Plotting for some example plots and a function to
export the network data, and The GUI for a few screenshots of the GUI).

Organization of this Manual

At the highest level of organization, there are several Parts. The general contents of each part are:

Introductory material contains installation information, validity of graph metrics calculated by igraph

and brainGraph, neuroimaging software and brain atlas compatibility, how to get help, other R packages
that may be of interest to neuroimaging researchers, and some code examples for getting data from
Freesurfer and FSL.

brainGraph basics contains information for starting to use the package. This includes a general overview
of the package, a brief introduction to R notation/conventions, a recommended workflow/script organization,
and an introduction to the package’s features and most basic operations.

Graph creation covers the necessary steps for creating graphs from your neuroimaging data. There
are separate chapters for structural covariance networks and data for which single-subject networks can
be created (e.g., DTI tractography or resting-state fMRI). The code blocks in these chapters start with
importing your data and end with some example operations you can perform on the graphs.

Group analyses detail the available methods for comparing groups (or performing within-group analyses).
These include the standard GLM, the Network-Based Statistic (NBS), and statistical mediation analysis for
single-subject graphs. For covariance networks, this includes bootstrapping, permutation/randomization
tests, and individual contributions. And for both types of network, random graph generation, small world
calculations, and rich club analysis.

Visualization describes the components of the brainGraph GUI, in addition to other functions for
visualizing different aspects of your data, such as adjacency matrix plots, plotting global (graph-level)
metrics by density, boxplots of vertex-level metrics, creating three-panel plots of the networks overlaid on a
brain MRI slice, and saving a list of graph plots. The chapter closes with description of a function for
exporting your data to work with the BrainNet Viewer tool.

Appendices list the attributes set by the function set brainGraph attr, several benchmarks (i.e.,
runtimes) for various functions/analyses, and the computing environment used in creating this document.

ix

Intended Audience

This User Guide is appropriate for researchers who use brain MRI to study connectivity. brainGraph

is not strictly limited to human MRI data, but it does not contain atlases for animal brains (but these
can be provided by the user). It is expected that the user has some experience with R (and/or other
programming languages), but this document should be appropriate for beginners. The user should have some
understanding of network/graph theoretical concepts. This User Guide is quite long, but I have attempted to
be comprehensive in documenting the functions in the package and the types of analysis that are common in
neuroimaging, with extensive code examples and figures. To learn more about the relevant topics (i.e., the
mathematics of networks, R programming), see some of my suggestions at Getting Help and Other Resources.
If you are a non-MRI researcher, there are many functions you can still use. See Functions for generic data
for a list.

Rationale

“The nice thing about standards is that you have so many to choose from.”

— Andrew S. Tanenbaum

Other tools for performing graph theory analysis of brain MRI data already exist. So why create a new one,
and why do it in R?

R is Free Software Using R does not require an expensive license (like Matlab), and does not involve
any “red tape” (such as the need to upgrade annually, having to deal with a licensing office, etc.). You can
simply download and install it. R is also open source, so you can add features, fix bugs, etc. Finally, you
can write your own packages, either for personal or public use. This package is, and will remain to
be, free and open source, in line with the recent push for sharing your code along with publications
(see Eglen et al. (32) for discussion).

R was made to do statistics The designers of R were statisticians (as are most/all of the R core

members). Many statisticians use R in their work. Additionally, there are currently more than 10,000
packages in the CRAN repository (as of Dec. 2020), many of which are created and maintained by experts
in statistics. If there is a statistical analysis you would like to perform, there’s a good chance it is available
in R. The R community is very extensive, with multiple e-mail lists, blogs, and forums (such as Stack
Overflow) available for help.

Package management Package management is very well done in R; downloading and updating packages
is nearly trivial. I have had a much easier time with R compared to dealing with dependencies for e.g., some
Python-based software (I know there is pip, but I had some issues; see this Stack Overflow question, which
I’m sure is now out-of-date). I consider myself tech-savvy, so I imagine it would be even more frustrating
for beginners. Downloading and installing brainGraph and its dependencies should be very simple, so the
user can focus on learning graph theory and how to interact with their data.

Documentation I have found the documentation for other tools/software specializing in graph theory
analysis of MRI data to be lacking (and in some cases non-existent), particularly in terms of the first step:
getting your data (cortical thickness/volumes, tractography, etc.) into a format that will just work. It has
been said that software is “only as good as its documentation”; I appreciate that many users just want a
tutorial to walk them through the steps, and I hope I have succeeded in that aspect.

Good support for reproducible research It is very easy to generate reproducible reports (or docu-
ments such as this one) on-the-fly. For this User Guide, I used knitr (131) with LATEX, and all the code is
in a git repository for version control. This system allows for easy documentation of analysis workflow and
any changes in output resulting from parameter changes; (re-)running all the code is essentially automatic
(I simply press \kp using Nvim-R with tmux to knit the pdf). I use the same process for generating results

x

http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/a/13445719/3357706

from other analyses I do in R, such as reporting summary statistics from DTI analyses of FA/MD/RD.1

Furthermore, Tables are generated automatically, so I don’t have to type all entries by hand, or copy-paste
things and worry about formatting (reducing user error). In fact, my dissertation was written with knitr

and LATEX because of these features.

Why isn’t there a “main” GUI?

Although GUI’s can be helpful to beginners, I chose not to create a “point-and-click” GUI for all of the
processing/analysis steps (except for exploring the results visually with plot brainGraph gui) because I
think it is of paramount importance to be “closer” to your data, instead of expecting a software package to
do all of the work. That said, this User Guide will provide examples for data organization and example code
to be placed in scripts that you can then run from the R console. So technically, you could “copy-paste” the
code from this User Guide and complete your analyses without paying attention, but I don’t recommend it.
Inspect your data at every step. I believe I have provided enough code to do that easily.

Typographical conventions

I use different font styles to indicate different types of objects:

• Software tools/packages, R functions/objects (not in brainGraph), inline code, data objects (e.g.,
function arguments or data column names), and filenames are printed in monospace font.

• Functions in the brainGraph package are highlighted and in monospace font.

• R code is printed in monospace font in a box with light gray background , with syntax high-

lighting applied.

• Linux command-line code is printed in a separate text box (also with some syntax highlighting).

• Graph metrics are printed in italicized font.

• Links to chapters/sections, figures, tables, and footnotes are printed with red font.

• External links (i.e., URL’s) are printed with blue font.

• Citations are printed with green font.

Icons and text boxes used

There are several places where you will see a colored text box (occasionally with an exclamation mark):

! New in v3.x.x

This box indicates a major change to brainGraph that was introduced in v3.0.0 and later.

! Warning

This box indicates a warning ; e.g., operations that will take an extremely long time.

Note

This box replaces a footnote if the note is long.

1There are other solutions in R that are similar to the Jupyter notebook, see for example rNotebook and editR

xi

https://github.com/ramnathv/rNotebook
https://github.com/swarm-lab/editR

Release Notes

Including all release notes would extend this document unnecessarily. You can always find the NEWS.md file
at the brainGraph repository: https://github.com/cwatson/brainGraph/blob/master/NEWS.md

Citing brainGraph

First, please cite Ref. Csardi and Nepusz (20) and any other relevant references for calculating certain graph
theory measures (see function documentation for some references). brainGraph is very reliant on igraph,
and they should be cited for their work.
I do not currently have a manuscript that specifically describes/introduces the package, but you may cite
Watson et al. (124). You also can get some citation information with the following code:

citation('brainGraph')

##

To cite package 'brainGraph' in publications use:

##

Christopher G. Watson (2020). brainGraph: Graph Theory Analysis

of Brain MRI Data. R package version 3.0.0.

https://github.com/cwatson/brainGraph

##

A BibTeX entry for LaTeX users is

##

@Manual{,

title = {brainGraph: Graph Theory Analysis of Brain MRI Data},

author = {Christopher G. Watson},

year = {2020},

note = {R package version 3.0.0},

url = {https://github.com/cwatson/brainGraph},

}

Publications citing brainGraph

1. Caligiuri et al. (13)

2. Barbagallo et al. (5)

3. Tanimizu et al. (110)

4. Cinelli et al. (15)

5. Watson et al. (124) – my work in congenital heart disease, analyzing structural covariance networks
(cortical thickness)

6. Janes et al. (59)

7. Malhotra et al. (75)

8. Mair (73) – a methodology text, Modern Psychometrics with R

9. Dajani et al. (22)

10. Watson et al. (125) – my work in pediatric traumatic injury (DTI tractography)

xii

https://github.com/cwatson/brainGraph/blob/master/NEWS.md

11. Ohashi et al. (82)

12. Homan et al. (52)

13. Ramos-Prats et al. (88)

14. Saba et al. (99)

15. Tiwary (114) – a review article discussing R packages for network analysis and/or biomedical modeling

16. Ostachuk (83)

17. Mangangcha et al. (76)

18. Venkatesan and Hillary (120)

19. Richmond et al. (92)

20. King et al. (65)

21. Delgado-Baquerizo et al. (25)

22. Teicher et al. (111)

23. Saqr et al. (101)

24. DellaPosta and Nee (26)

25. MacCormack et al. (72)

26. Rashidi-Ranjbar et al. (89)

27. Feldmann et al. (38)

28. Haqiqatkhah and van Leeuwen (47)

29. Areshenkoff et al. (3)

xiii

xiv

Part I

Introductory Material

Chapter 1: Installation and Requirements . 2

Chapter 2: Getting Help and Other Resources . 7

Chapter 3: Getting data from Freesurfer and FSL . 11

1

1

Installation and Requirements

1.1 System Requirements

! New in v3.0.0

There are several fewer package dependencies in the latest version. This should allow for faster/leaner
installs.

There aren’t any, specifically (aside from required R packages). But I have some recommendations:

Hardware You should have a multi-core CPU and lots of RAM (the more, the better; probably
at least 4 GB). Having a large number of cores is very important, particularly if you
want to do permutation testing or bootstrapping (or if you are working with very
large graphs). Note that you will need a lot of RAM with more CPU cores.

Operating System I 100% recommend using Linux (my personal preference is CentOS; RHEL and
Scientific Linux are the same, and Fedora is similar). If you have been us-
ing Freesurfer and/or FSL, then you likely have access to a Linux machine. It may
be worthwhile to spin up a virtual machine running some flavor of Linux. Almost all
testing and developing of this package was done on 64-bit CentOS 6 and CentOS 7.
Some (early development) was done on 64-bit Windows 7.

Packages There are several packages that are required/recommended:

• igraph (current version is v1.2.4.1)

• foreach and doParallel (additionally, doMC/doSNOW, the multicore packages
for Linux/Windows)

• data.table (excellent general-purpose package)

• lattice, grid (plotting-related; fewer dependencies compared to ggplot2)

• Matrix, abind, (functionality for matrices and multi-dimensional arrays)

• permute (to generate random permutations)

• MASS (general-purpose packages for data analysis; supports the Venables &
Ripley textbook Modern Applied Statistics with S)(119)

Suggested Packages required for 1 or a few functions, and other general packages, include:

• RGtk2 and cairoDevice are mandatory only if you want to use the GUI. Thanks
to @michaelhallquist for his contribution in making this work!

2

1.2 GUI-related note 3

• boot (required for brainGraph boot)

• ggplot2, scales, gridExtra, and ggrepel (plotting-related packages)

• Hmisc, ade4 (general-purpose packages for data analysis). Required for
corr.matrix and loo/aop, respectively.

• mediation (causal mediation analysis)

• car (tools for applied regression)

• oro.nifti (a general NIfTI library)

• expm (for communicability and centr betw comm)

R interface For users not comfortable with a full command line interface, I recommend using
RStudio. It is a full desktop environment (free), that is very similar in look and
concept to the Matlab desktop.

1.2 GUI-related note

The GUI requires both RGtk2 and cairoDevice to be installed. These can sometimes be difficult to properly
install without issue.
If your operating system is Mac OS or Windows, please see this GitHub Gist. The comments contain more
recent information. You may need to install a couple additional packages; the code is at the end of the gist
(repeated here). The third package listed (RGtk2Extras) might not be required.

install.packages('gWidgets', dependencies=TRUE)

install.packages('gWidgetsRGtk2', dependencies=TRUE)

install.packages('RGtk2Extras', dependencies=TRUE)

1.3 OS-specific instructions and notes

1.3.1 Preferred method, any OS

Regardless of the operating system, to install the latest stable version, you can download it from CRAN by
simply typing:

install.packages('brainGraph')

For the latest development version, use devtools to install it from Github. It should install all dependencies
for you.

require(devtools)

devtools::install_github('cwatson/brainGraph')

1.3.2 Linux

You may download the tarball from the official CRAN page or elsewhere, and in R you would install it by
typing one of the following two commands:

install.packages('brainGraph_${VERSION}.tar.gz', type='source', dependencies=TRUE)

install.packages('brainGraph_${VERSION}.tar.gz', type='source', repos=NULL)

https://www.rstudio.com/
https://gist.github.com/sebkopf/9405675#macos
https://cran.r-project.org/web/packages/brainGraph/index.html

4 Chapter 1: Installation and Requirements

The latter command above is equivalent to installing from the command line, and requires that all dependencies
have already been installed:

[user@host]$ R CMD INSTALL brainGraph_${VERSION}.tar.gz

1.3.3 Mac

I haven’t tested on Mac yet, but here are the versions that it should work on:

macOS 10.13 High Sierra see the note and link in GUI-related note

macOS 10.12 Sierra passed CRAN checks.

OS X 10.11 El Capitan has not passed recent CRAN checks (specifically, version 10.11.6), but I
have had previous confirmation from a user that it works.

OS X 10.10.5 Yosemite it may be necessary to download the binary GTK package (.pkg file) from
https://r.research.att.com/.

OS X 10.9.2 (13C64) passed CRAN checks.

1.3.4 Windows

You should first try to download directly from CRAN (using install.packages()). If that causes any

problems, I recommend using devtools and installing directly from Github. See also the URL listed in
GUI-related note for some instructions when it comes to installing RGtk2. You may end up needing to
add/edit a couple environment variables.
Some additional information:

• To install from source on Windows, you first have to download and install Rtools

• You may have to install either the 32- or 64-bit version only, in case there is a problem with GTK+

(required for the plotting GUI). To install the package for just one architecture, run the following
command:

install.packages('brainGraph', INSTALL_opts='--no-multiarch')

1.4 Compatible neuroimaging software

The functions in brainGraph should work for any software that returns a text file containing connectivity
matrices (unless you are creating covariance/correlation networks). Here is a list of software that I know to
work (either first-hand or from a brainGraph user):

• Freesurfer (for structural covariance networks)

• FSL (specifically DTI tractography using probtrackx2)

• DPARSF (seed-based connectivity from resting-state fMRI; see Ref. (132))

• PANDA (for DTI analyses; see Ref. (21))

• TrackVis (for DTI analyses; see Ref. (123))

https://r.research.att.com/
https://cran.r-project.org/bin/windows/Rtools/
https://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://rfmri.org/DPARSF
http://www.nitrc.org/projects/panda/
http://trackvis.org/

1.5 Compatible atlases 5

Atlas name R object Ref.

Desikan-Killiany dk (27)
Desikan-Killiany-Tourville dkt (66)
Destrieux destrieux (28)
FS atlases w/ scgm dk.scgm, dkt.scgm, destrieux.scgm

AAL aal90, aal116 (115)
AAL2 aal2.94, aal2.120 (96)

Dosenbach dosenbach160 (29)
Craddock-200 craddock200 (18)
Harvard-Oxford hoa112 (74)
LONI probabilistic brain atlas lpba40 (106)
Brainsuite brainsuite (85, 105)
HCP Multimodal Parcellation hcp mmp1.0 (42)
Power power264 (86)
Gordon gordon333 (44)
Brainnetome brainnetome (37)

Table 1.1: Brain atlases, their corresponding R object names, and a reference for the atlas.

1.5 Compatible atlases

There are a handful of atlases that will work “out-of-the-box”. See Table 1.1 for the atlases, the R object
names, and references for each.

! New in v3.0.0

The following atlases are new in v3.0.0:

hcp mmp1.0

power264

gordon333

brainnetome

In the next code block, I show several lines of the dk atlas (this object is a data.table), along with the
structure of the object. The name.full column is provided (for a handful of atlases) for use in tables for
publication (if desired).

dk[4:9]

name x.mni y.mni z.mni lobe hemi index name.full

1: lCUN -1 -82 20 Occipital L 4 L cuneus

2: lENT -16 -10 -29 Temporal L 5 L entorhinal

3: lFUS -24 -54 -16 Temporal L 6 L fusiform

4: lIPL -47 -70 31 Parietal L 7 L inferior parietal lobule

5: lITG -56 -32 -24 Temporal L 8 L inferior temporal gyrus

6: liCC -1 -48 25 Cingulate L 9 L isthmus cingulate cortex

str(dk, strict.width='cut')

6 Chapter 1: Installation and Requirements

Classes 'data.table' and 'data.frame': 68 obs. of 8 variables:

$ name : chr "lBSTS" "lcACC" "lcMFG" "lCUN" ...

$ x.mni : num -56 -2 -45 -1 -16 -24 -47 -56 -1 -43 ...

$ y.mni : num -44 21 18 -82 -10 -54 -70 -32 -48 -87 ...

$ z.mni : num 5 27 46 20 -29 -16 31 -24 25 1 ...

$ lobe : Factor w/ 6 levels "Frontal","Parietal",..: 3 6 1 4 3 3 2 3..

$ hemi : Factor w/ 2 levels "L","R": 1 1 1 1 1 1 1 1 1 1 ...

$ index : int 1 2 3 4 5 6 7 8 9 10 ...

$ name.full: chr "L bank of the superior temporal sulcus" "L caudal an"..

- attr(*, ".internal.selfref")=<externalptr>

1.5.1 Using your own atlas: required format

If you have an atlas you would like to use, just follow the data structure shown above and it should work
without issue. To ensure that your data.table conforms to this format, you can use the function as atlas.
You can also supply individual columns/variables to the function create atlas, although the former is
simpler. The requirements are: 1

• The object must be a data.table

• The object must have, at a minimum, columns: name, {x,y,z}.mni, lobe, hemi, index

• The lobe and hemi columns should be factor variables.

• The index column is simply an integer sequence from 1 to the number of rows (regions).

• You can also include additional columns if you wish. For example, dosenbach160 contains a network

column, seen in the code block below. I calculate assortativity based on these values, and you can
calculate other graph measures based on these network delineations as well.

dosenbach160[, table(network)]

network

default fronto-parietal cingulo-opercular sensorimotor

34 21 32 33

cerebellum occipital

18 22

I recommend writing the data object as a rda file (using save); then it can be re-loaded with load .

1.5.2 Atlases to be added (potential)

I can add other atlases for future versions, but would need the required information (see above) to do so.
Atlases/parcellations that I am aware of include:

• Shen-268 (107)

• Von Economo – Koskinas (103)

• Willard-499 (91)

• Schaefer-400 (102)

1See the structure of other atlases by typing e.g. str(dosenbach160) .

2

Getting Help and Other Resources

2.1 Getting help

The main CRAN page for brainGraph is https://cran.r-project.org/web/packages/brainGraph/; there
you will find the R reference manual. The Github repository page is https://github.com/cwatson/

brainGraph; this contains the package source code for the latest development version.

For general questions, complaints, bug reports, feature requests, criticisms, etc., you have 2 options:

1. Join the Google Group, brainGraph-help, by going to the Google Group page and clicking Apply to
join group. The email address for the group is brainGraph-help@googlegroups.com.

2. Open an issue on the Github issues page. This requires that you have a Github username already. I am
emailed any time an issue is opened.

For both of these, there are a few things you can do to aid me in figuring out the problem, including:

• Read this Stack Overflow answer.

• Include your session info using either of the commands sessionInfo() or session info() (from
the devtools package).

• Save the relevant data needed for me to reproduce the problem. Use save if there are multiple

variables, and saveRDS for individual objects/variables.

• Include the exact code/command line that you used when you encountered the problem. Ideally, send
me the code in a .R script.

2.2 Learning resources

2.2.1 Graph theory

M.E.J. Newman’s text is perhaps the best comprehensive textbook on networks, and is appropriate for
beginners and experts alike (79). In the literature, there are many extensive/classic review articles on
graph theory. For an incomplete list, see the Wiki on my Github page. If you want to learn more about
network statistics (in general, not domain-specific), I recommend Kolaczyk’s text, which requires at least
an intermediate level of statistical knowledge (67). To learn more about network statistics using igraph

specifically, I recommend Kolaczyk & Csardi (2014) (part of the Use R! series) (68). Finally, a great
neuroimaging-specific text is Fornito et al. (39).

7

https://cran.r-project.org/web/packages/brainGraph/
https://github.com/cwatson/brainGraph
https://github.com/cwatson/brainGraph
http://groups.google.com/forum/?hl=en#!forum/brainGraph-help
mailto:brainGraph-help@googlegroups.com
https://github.com/cwatson/brainGraph/issues
https://stackoverflow.com/a/5963610/3357706
https://github.com/cwatson/brainGraph/wiki/References

8 Chapter 2: Getting Help and Other Resources

Package Description URL

network General network tools CRAN
intergraph Convert between igraph and network CRAN
statnet An integrated suite of packages CRAN
tnet Tools for analyzing weighted networks CRAN; Tore Opsahl’s site
sna Tools for social network analysis CRAN
Rgraphviz Interface for graphviz library (visualization) Bioconductor
NetworkToolbox Network-related tools for the psychological sciences CRAN
qgraph Weighted network visualization and analysis (devel-

oped for psychometric data)
CRAN

Table 2.1: Other network-related packages.

2.2.2 R programming

For help with learning R itself, there are a multitude of tutorials (freely) available, and I can help with code
issues specific to brainGraph. Some websites that might be of use:

• R-tutor

• Quick-R

• R for Matlab users cheat sheet

• Stack Overflow: questions tagged with R

2.3 Other R packages

2.3.1 Other network-related packages

Besides igraph, there are several R packages that deal with networks. First, you can see the graphical models
Task View, which lists packages with functionality specific to graphs.

2.3.2 Medical Imaging Task View

There are quite a few R packages for working with MRI data. First, there is a “CRAN Task View”, Medical
Imaging, that is a collection of medical image analysis packages. The website is here.

2.3.3 Neuroconductor

Neuroconductor is a repository of medical image analysis packages as well. The name calls to mind the
Bioconductor project for molecular biology. More information can be found here.

2.3.4 Implementations of popular MRI software

There are several packages that are re-implementations of other popular tools.

fslr Port to FSL tools

spm12r Port to SPM tools

freesurfer Port to Freesurfer

ANTsR Implementation of ANTs tools

https://cran.r-project.org/web/packages/network/index.html
https://cran.r-project.org/web/packages/intergraph/index.html
https://cran.r-project.org/web/packages/statnet/index.html
https://cran.r-project.org/web/packages/tnet/index.html
https://toreopsahl.com/tnet/
https://cran.r-project.org/web/packages/sna/index.html
https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
https://cran.r-project.org/web/packages/NetworkToolbox/index.html
https://cran.r-project.org/web/packages/qgraph/index.html
http://www.r-tutor.com/r-introduction
http://www.statmethods.net/
http://mathesaurus.sourceforge.net/octave-r.html
https://stackoverflow.com/questions/tagged/r
https://cran.r-project.org/web/views/gR.html
https://cran.r-project.org/web/views/gR.html
https://cran.r-project.org/web/views/MedicalImaging.html
https://neuroconductor.org/
https://github.com/muschellij2/fslr
https://github.com/muschellij2/spm12r
https://github.com/muschellij2/freesurfer
https://github.com/stnava/ANTsR

2.4 Validation of graph metrics 9

rcamino Port of Camino

hcp Connects to the Human Connectome Project

2.3.5 Other

Finally, there are still more packages for working with MRI data:

RNifti Read and write NIfTI images

tractor Tools for tractography in R

dti DTI processing in R

RAVEL Processing and analysis of MRI data

2.4 Validation of graph metrics

Since I don’t expect potential users to blindly trust that my code will do what they want it to do, I have
compared results using brainGraph with results from Brain Connectivity Toolbox (BCT). There are a
few minor differences that appear to be off by just a scalar:

No differences

Measure

Degree Strength (weighted networks)
Edge betweenness K-coreness centrality
Subgraph centrality Within-module degree z-score
Participation coefficient Clustering coefficient
Transitivity (graph-wise) Assortativity (graph-wise)
Global efficiency Local efficiency
Connected components Motif frequency (# of triangles)

Betweenness centrality Results obtained from BCT are exactly 2x that of igraph.

Eigenvector centrality Results obtained from BCT are ≈ 3.6x that of igraph (for unknown reasons)

Leverage centrality Doesn’t exist in BCT

Characteristic path length To get the same answer as in BCT, use:

mean(shortest.paths(g)[!is.infinite(shortest.paths(g))])

However, the 2 correlate perfectly, and the largest absolute difference I
have seen is ≈ 0.03 (which is less than 1%)

Rich club Number of edges is exactly 2x in BCT compared to brainGraph (and is
incorrect in BCT)

Modularity (Louvain) There are differences, but minor. I don’t know if they are systematic or
not.

If you still would like to convince yourself, or do your own testing (please do so!), download the R.matlab

package and use the following code. To understand what these variables are, see Chapter 5 (and later). To
use these variables in Matlab, simply type (in Matlab) load g1.mat.

https://github.com/muschellij2/rcamino
https://github.com/muschellij2/hcp
https://github.com/jonclayden/RNifti
http://www.tractor-mri.org.uk/home
https://cran.r-project.org/web/packages/dti/index.html
https://github.com/Jfortin1/RAVEL

10 Chapter 2: Getting Help and Other Resources

A <- corrs[[1]][[N]]$r.thresh # Unweighted (binary) adjacency matrix

diag(A) <- 0

W <- corrs[[1]][[N]]$R # Weighted adjacency matrix

diag(W) <- 0

C <- V(g[[1]][[N]])$comm

writeMat('g1_N.mat', A=A, W=W, C=C)

3

Getting data from Freesurfer and FSL

This chapter describes how to get data that can easily be imported into R for use with brainGraph. Specifically,
I will use cortical thickness data from Freesurfer in the first section, and will explain how to use Freesurfer
ROI’s as seed regions for tractography in the second section.

Note

The code in this chapter is specific to Bash; there should be a similar solution for other shells.

3.1 Structural data from Freesurfer

Use aparcstats2table to get mean cortical thickness for each region and each subject into a single file.
You may also get subcortical gray matter volumes with asegstats2table. Replace the subjects variable
definition with something that makes sense for your data.

Collect regional statistics

1 parc='aparc' # Or 'aparc.DKTatlas40', or 'aparc.a2009s'

2 measure='thickness' # Or 'volume', 'area'

3 subjects=$(ls -d [[:lower:]]*[a-z0-9]*/)

4 for h in 'lh rh'; do

5 aparcstats2table --subjects ${subjects} --hemi ${h}

6 --meas ${measure} -p ${parc} --skip fsaverage

7 --delimiter=comma

8 --tablefile ${parc}_${h}_${measure}.csv

9 done

10 asegstats2table --subjects ${subjects} --skip --meas volume --common-segs

11 --segno 10 11 12 13 17 18 26 49 50 51 52 53 54 58 --delimiter comma

12 --tablefile asegstats.csv

3.2 Tractography

In this section, I describe the steps for using one of the Freesurfer atlases (along with subcortical gray
matter) as seed regions for probtrackx2 in FSL. I have a script for automation, but the code in this section
is a good start. It is assumed that recon-all has been completed for the current subject (because I use the
transformation matrices that are calculated by TRACULA). I use the Desikan-Killiany atlas for cortical regions,
and the subcortical regions are included.

11

12 Chapter 3: Getting data from Freesurfer and FSL

I have more tools in a Bash library which can be found at my GitHub repository. The code in this library
includes initial preprocessing steps through to tractography.

3.2.1 Create/convert parcellated volume

First, the parcellation volume must be created if it doesn’t exist, and converted to NIfTI.1 The DWI volume
is called dwi.nii.gz. If you need to create the file for the DKT atlas, the following code will do so.

Parcellation volume

1 # Replace {subj} with your Subject's ID

2 if [! -e "aparc.DKTatlas40+aseg.mgz"]; then

3 mri_aparc2aseg --s ${subj} --annot aparc.DKTatlas40

4 mri_convert aparc.DKTatlas40+aseg.{mgz,nii.gz}

5 fi

3.2.2 Get individual seed ROI’s

I created a text file with the names and (Freesurfer-specific) indices of each ROI; in this example, it is
called dk.scgm.txt. The lines of this file look like: (see full file at GitHub)

ROI label file

1001 1001_ctx-lh-bankssts

1002 1002_ctx-lh-caudalanteriorcingulate

1003 1003_ctx-lh-caudalmiddlefrontal

...

The existence of the file anatorig2diff.bbr.mat is from TRACULA; if you want to use this file, you must run
the first step of trac-all. The code example assumes that a dmrirc config file for the subject exists.

Get individual ROI’s

1 if [! -e "${SUBJECTS_DIR}/${subj}/dmri/xfms/anatorig2diff.bbr.mat"]; then

2 trac-all -c ${subj}.dmrirc -intra -masks

3 fi

4

5 labelfile='dk.scgm.txt'

6 mkdir -p seeds/dk.scgm && cd seeds/dk.scgm

7 while read line; do

8 roiID=$(echo ${line} | awk '{print $1}' -)

9 roiNAME=$(echo ${line} | awk '{print $2}' -)

10 fslmaths

11 ${SUBJECTS_DIR}/${subj}/dlabel/diff/aparc+aseg.bbr

12 -thr ${roiID} -uthr ${roiID}

13 -bin ${roiNAME}

14 fslstats ${roiNAME} -V | awk '{print $1}' >> sizes.txt

15 done < ${labelfile}

16

17 echo ${PWD}/*.nii.gz | tr " " "\n" >> seeds.txt

18 paste sizes.txt seeds.txt | sort -k1 -nr - | awk '{print $2}' - >> seeds_srt.txt

19

20 # Ventricles mask; for use with ``--avoid'' flag

21 mri_binarize --i ${SUBJECTS_DIR}/${subj}/dlabel/diff/aparc+aseg.bbr.nii.gz

1The mgz volumes for the DK and Destrieux atlases are created automatically by recon-all.

https://github.com/cwatson/mri_library
https://github.com/cwatson/mri_library/tree/master/atlases

3.2 Tractography 13

22 --ventricles -o ventricles.nii.gz

The final step of the while loop calculates the ROI sizes, which you may wish to use when normalizing the
connectivity matrices; see Tractography and fMRI. The final lines of the code create a text list of the seed
region files and sorts them by size; this is used as input to probtrackx2 (specifically, the -x option).

Part II

brainGraph Basics

Chapter 4: Overview of the brainGraph Package . 15

Chapter 5: Getting started . 20

14

4

Overview of the brainGraph Package

This chapter provides an overview of brainGraph both in terms of concepts/workflow and the functions
themselves. This package relies almost entirely on the igraph package (20) (hence the creative name for my
package), so all operations/functions require this package. A complete list of the functions and their help
sections is in the package manual.

4.1 Concepts/workflow

There are a handful of conceptual/workflow-related categories (or “levels”) under which functionality in
brainGraph falls. By “workflow”, I mean this is more or less the order of operations for your user scripts.
The steps I list below are very generic, and some of them will likely have multiple “sub-steps” (e.g., different
types of group analyses).

4.1.1 “Step 0”: Setting up data and scripts

This needs to be done before using brainGraph, and is not specific to the package (i.e., is common to all data
analysis projects). I give some advice in Setting up files for your project. Throughout the User Guide, there
are code blocks that can be placed into your scripts, or adapted to work with your specific analysis needs.

4.1.2 Step 1: Import data and create connectivity matrices

The operations/functions for this step differ depending on the type of input data you have, and the networks
you aim to create:

Structural covariance The input data need to be csv or tsv files containing the region-wise brain
metrics (e.g., cortical thickness; see Import the data) for all subjects.

DTI tractography The input data should be the connectivity matrices as calculated from the
tractography program of your choosing. I personally use FSL’s probtrackx2.
See Setting up for more info.

Resting-state fMRI The input data should be the connectivity matrices as calculated by your software-
of-choice, representing the inter-regional (partial) correlations, for example.

Once the data are imported, matrices of structural covariance will be created from partial correlations, linear
model residuals, etc. (see Correlation Matrix and Graph Creation). The same function that performs those
correlations will threshold the matrices by density or threshold. These networks will typically be group-level ;
i.e., there will be 1 network per group.

For subject-level networks (DTI tractography or resting state fMRI), you threshold the connectivity matrices
based on criteria of your choosing (see Import, normalize, and filter matrices for all subjects).

15

https://cran.r-project.org/web/packages/brainGraph/brainGraph.pdf

16 Chapter 4: Overview of the brainGraph Package

4.1.3 Step 2: Create graphs and calculate metrics

Graph creation differs slightly for covariance networks (Graph creation) and single-subject networks (Graph
creation), but the same function (make brainGraphList) will be invoked. In those same sections, I show
how to collect graph metrics of interest into a table, as well.

4.1.4 Step 3: Perform group analyses

There are several types of analysis, all of which require more in-depth description. See Part IV and Part V.

4.1.5 Step 4: Visualize results

There is a GUI for quick manipulation and inspection of graphs; furthermore, several separate functions are
available for plotting results from specific analyses. See Part VI and the group analysis chapters.

4.2 Functions

4.2.1 Graph creation

Several functions can create graphs for various analyses; the names begin with make , following the nam-
ing convention for graph constructors in the igraph package. The creation functions and the respective
classes/analyses are described in more detail in Box 4.1 and Table 4.1.

! New in v3.0.0

All of the following (except the last 2) are new functions, while make brainGraph is now an S3 method.

make brainGraphList Creates an object containing, in addition to some metadata, a list of brainGraph
objects. This list should contain all study subjects, irrespective of group membership, for a single threshold
or density.1 This same function is used to create graphs of the results from brainGraph GLM (see Vertex-wise
group analysis (GLM)), mtpc (see Multi-threshold permutation correction), and NBS (see Network-based
statistic (NBS)). Furthermore, you can supply the output of corr.matrix directly to this function for
structural covariance networks (see Graph creation).

make brainGraph Creates a brainGraph graph object, given an igraph graph object or matrix. This
assigns several attributes that are specific to brain MRI data (mostly related to the brain atlas in use).
You most likely should not have to call this function yourself (except when creating graphs of the results
from brainGraph mediate; see Graph- and vertex-level mediation analysis). Otherwise, you should use
make brainGraphList.

make auc brainGraph Creates a single brainGraphList object in which each graph contains the area
under the curve (AUC) of the specified graph- or vertex-level metric(s).

make intersection brainGraph Create a graph based on the intersection of vertices meeting some
criteria. For example, if you have multiple t- or F-contrast graphs, you can determine vertices showing a
significant difference. See ?make intersection brainGraph for examples.

make empty brainGraph Creates an empty graph (i.e., one with no edges); typically the end user will
not need to call this. This is analogous to igraph’s make empty graph.

make ego brainGraph Creates a graph of the union of multiple vertex neighborhoods. This extends
igraph’s make ego graph.
1You can think of these objects as analogous to the 4-D NIfTI files that are created by FSL’s tbss (i.e., the files used as input

to randomise).

4.2 Functions 17

4.2.2 Graph metrics

igraph already contains functions for the most common graph metrics (e.g., degree, betweenness, etc.).
Functions that I wrote and the graph metrics they calculate include:

• leverage centrality; centr lev (62)

• global, local, and nodal efficiency; efficiency

• Vertex roles; gateway coeff (118), part coeff and within module degree z score (45)

• Rich club calculations; rich club coeff, rich club norm, and rich core (71)

• The s-core of vertices; s core (33)

• Weighted shortest path lengths: mean distance wt

• Vertex “hubness”: hubness (117)

• Euclidean distances; edge spatial dist and vertex spatial dist

• Communicability; communicability (19, 34) and centr betw comm (35)

• Vertex vulnerability; vulnerability (1, 51)

• Edge counts; count homologous (counts the number of edges between homologous brain regions) and
count inter (counts the number of edges between and within all lobes, hemispheres, etc.)

• Asymmetry index: edge asymmetry

One function in the package, set brainGraph attr, calculates most of these metrics and more for a given
graph (e.g., global efficiency, clustering coefficient, characteristic path length, and many more), and for its
vertices (e.g., degree, nodal efficiency, etc.) and edges (e.g., edge betweenness). This is very useful because it
removes the nuisance of having to type a separate command for every measure of interest. To see exactly what
it calculates, see Attributes created by set brainGraph attr or check the function help (accessible by typing
?set brainGraph attr) under the heading Value. However, you will likely not call this function yourself;

it will be done automatically, for all subjects, if you pass set.attrs=TRUE to make brainGraphList.

4.2.3 Group comparison

There are several methods for comparing groups:

• Between-group vertex-wise analysis of graph metrics with the General Linear Model (GLM): brain
Graph GLM. See Vertex-wise group analysis (GLM) for details.

• The network-based statistic (NBS) (134): NBS. See Network-based statistic (NBS) for details.

• Multi-threshold permutation correction (MTPC) (30) method for inference: mtpc. See Multi-threshold
permutation correction for details.

• Mediation analysis: brainGraph mediate. See Graph- and vertex-level mediation analysis for details.

• Bootstrapping and permutation testing (for structural covariance networks): brainGraph boot and
brainGraph permute. Details can be found in Further analysis.

• “Individual contributions” for data in which single-subject graphs are not available (e.g., structural
covariance networks); loo and aop. See Individual contributions for details. (100)

• Targeted attack and failure analyses: robustness. See the “Robustness” section in Further analysis for
implementation and plotting.

18 Chapter 4: Overview of the brainGraph Package

Class name Creation function Description

brainGraph make brainGraph Any graph with certain attributes (see text)
brainGraphList make brainGraphList A list of graphs (see text)
brainGraph GLM make brainGraphList Graphs from GLM analysis
brainGraph NBS make brainGraphList Graphs from NBS analysis
brainGraph mtpc make brainGraphList Graphs from MTPC analysis
brainGraph mediate make brainGraph Graphs from mediation analysis
brainGraph boot brainGraph boot Bootstrapping analysis (non-graph)
brainGraph permute brainGraph permute Permutation analysis (non-graph)
brainGraph resids get.resid Residuals for covariance networks (non-graph)
corr mats corr.matrix Correlation matrix of residuals (non-graph)
IC aop, loo Individual/regional contributions (non-graph)

Table 4.1: Class names and graph creation functions.

4.2.4 Visualization

There is a GUI for plotting the graphs overlaid on a slice of the MNI152 brain (plot brainGraph gui). You
can visualize up to two brains (single orientation; e.g., axial) at once. The GUI controls vertex/edge color
and size, labels, inclusion/exclusion, and more. See The GUI for more details. In addition, there are some
functions for plotting various graph metrics; see Other plotting. Finally, there is a plotting method for the
classes mentioned in Box 4.1. See the respective chapters introducing the classes for details.

4.2.5 Random graphs, small world, and rich club

sim.rand.graph.par will create a number of random graphs in parallel, based on the “standard” method of
random graph generation (78). An additional option is to generate random graphs with the same degree
distribution and transitivity (clustering) as the observed graph. This is based on the algorithm from Bansal
et al. (4), and is particularly important for partial correlation networks (e.g., cortical thickness correlations;
see Refs. Hosseini and Kesler (53), Zalesky et al. (134)). You may also choose to create random covariance
matrices with sim.rand.graph.hqs; see Hirschberger et al. (49). This function is meant to be used with
structural covariance networks but could also work with resting-state fMRI. Finally, analysis random graphs

is really a wrapper that will perform all of the steps for getting small-world and rich-club coefficients for all
group data. See Random graph generation for more information.

4.2.6 Generic methods

There are several generic methods that will work for different types of brainGraph objects. Most of these
are convenience functions used within the package but may be helpful in regular use. These include:

groups Returns a character vector of group names for each subject. Works for brainGraphList,
brainGraph resids, and corr mats objects.

nobs Returns an integer of the number of subjects in an object. Works for bg GLM, NBS, mtpc,
brainGraphList, and brainGraph resids objects.

case.names Returns a character vector of the subject ID’s in an object. Works for bg GLM and
brainGraph resids objects.

region.names Returns a character vector of region names in an object. Works for data.table, bg GLM,
mtpc, brainGraph resids, and corr mats objects.

nregions Returns an integer of the number of regions in an object. Works for bg GLM, NBS, mtpc,
corr mats, and brainGraph resids objects.

4.2 Functions 19

BOX 4.1 Classes and methods

Having classes and methods should simplify package usage in several areas. For example, in base R,
if you use the lm function, the object returned has class lm; to view a summary and to plot some

results, you simply call summary and plot , respectively. These “invisibly” run the functions

summary.lm and plot.lm which are specialized for that type of data.

Second, each of these objects will also contain the important input parameters that the user supplies
(for example, the significance level alpha). This is helpful for bookkeeping purposes and facilitates
reproducible research or comparing results with varying inputs.

Here, I list the classes in brainGraph and in later chapters give example usage and output. Note that
you do not need to remember the full names of these classes; you can simply type the base method
name (e.g., plot(res.glm)) and R will take care of the rest.

brainGraph This class is essentially the same as an igraph graph object, but adds several
graph-level (atlas, modality, Group, etc.) and vertex-level (lobe, hemi, spatial coordinates, etc.)
specific to brain MRI analysis. These are created directly by make brainGraph and indirectly by
make brainGraphList.

brainGraphList A class containing various metadata (e.g., the package version used to create
it and the date), as well as a list of graphs. Most of the group analysis functions work on these
objects.

bg GLM Contains results from brainGraph GLM (see Vertex-wise group analysis (GLM)).

NBS Contains results from NBS (see Network-based statistic (NBS)).

mtpc Contains results from mtpc (see Multi-threshold permutation correction).

bg mediate Results from brainGraph mediate (see Graph- and vertex-level mediation analysis).

brainGraph GLM The graph associated with bg GLM objects. It has GLM-specific attributes

(for plotting), created by the function make brainGraphList.

brainGraph NBS The graph associated with NBS objects. It has NBS-specific attributes (for
plotting), also created by make brainGraphList.

brainGraph mtpc The graph associated with mtpc objects. It is also created by

make brainGraphList.

brainGraph mediate The graph associated with bg mediate objects. It has mediation-specific

attributes (for plotting), created by make brainGraph.

brainGraph boot Returned by brainGraph boot. See Bootstrapping for details.

brainGraph permute Returned by brainGraph permute. See Permutation testing for details.

brainGraph resids Returned by get.resid for structural covariance networks (see Structural
covariance networks).

corr mats Returned by corr.matrix for structural covariance networks

IC Returned by aop and loo. See Individual contributions for details.

5

Getting started

In this Chapter, I describe the most basic aspects of using brainGraph. I begin by suggesting some script/code
organization. Then I show the other R packages that I load. Next, I show the structure of my covariates data.
Finally, I introduce graph, vertex, and edge attributes and show how to plot from the terminal. For some
information about R notation, see Box 5.1.

5.1 Setting up files for your project

5.1.1 Project scripts

I have several scripts, each of which carries out a separate “task”; they are numbered sequentially in a manner
that may depend on the imaging modality, project, etc. For example: (incomplete list)

00 packages.R loads required packages

01 load myProject.R loads/imports the [thickness/tractography/rs-fMRI] data and creates some initial
variables. I have a different script for each modality and for each project/study.

02 create graphs.R creates the graphs, etc. I have a different script for volumetric (covariance
networks) data and for tractography/rs-fMRI.

03 random graphs.R runs analysis random graphs, and does extra processing if, for example, I create
random graphs controlled for clustering.

main.R sources all of the other scripts. I can comment out specific lines if I don’t want to
re-do a step.1

This is similar in philosophy to the top response to this Stack Overflow question. I also recommend that you
read Noble (81) which is specific to computational biology but has very good recommendations for project
organization. In the future, I would like to move to using Makefiles for this kind of data processing workflow.

I keep my code, data, and results in separate directories. Within the results, I have sub-directories for
different modalities and the date the analysis was performed.

1I actually haven’t done analyses this way lately because it seems to be slower overall (possibly due to how R handles memory,
does garbage collection, or something else).

20

http://stackoverflow.com/questions/1429907/workflow-for-statistical-analysis-and-report-writing

5.1 Setting up files for your project 21

BOX 5.1 Basic R notation

Here, I briefly explain some of the R notation. In sections with R code, any line beginning with a double
hashtag/pound sign (i.e., ##) signifies code output. Lines beginning with a single hashtag/pound
sign are comments written by me, and are ignored by the R interpreter.

Assignment Unlike Matlab, assignment is usually done with the symbol <- . Reasons for
this are beyond the scope of this document. However, argument specification
within a function call will always use the equals sign.

Lists A list is very similar to a cell array in Matlab. To access list elements in R, you
must use double square brackets (whereas in Matlab you would use curly braces).
For example, to access the graphs for group 1 (shown later), you would type

g[[1]] .

Dollar sign The dollar sign $ is used to access list or data frame elements if they are named.
In the section on covariates, if I want to access the column for subject Age, I

would just type covars$Age .

data.table
assignment

In some code using data tables, I use the assignment operator := . This allows
you to insert/change a column in-place, and is very fast and memory efficient.

The *apply
functions

These functions (sapply, lapply, mapply, Map, llply, etc.) all operate on
lists/vectors. They are equivalent to a for loop in other languages, but require
less typing.

Object names Following the Google style guide, I name my constants beginning with a k, e.g.,
kNumDensities refers to the number of densities. Object names should be as

informative as possible; however, some of the ones I use are stupid/bad and were
done out of laziness. Most of the data.table’s I create begin with dt and the
graphs I create begin with g. I usually include a dot/period in object names, which
differs from Hadley Wickham’s style guide, and also differs from dot notation in
Object-Oriented Programming.

5.1.2 Package global options

! New in v3.0.0

Global options are new in v3.0.0.

There are a few package-specific global options that affect package usage. I will first list the option names,
and then describe how you can change them.

bg.subject id The character string specifying the variable name (in your project) corresponding to subject
ID’s. The default value is Study.ID (this was hard-coded in all previous versions). If your
project uses a different name (e.g., if you follow the BIDS suggestion of participant id)
then you can specify it with this option.

bg.group The character string specifying the variable name (in your project) corresponding to the
group variable. The default is Group (this was hard-coded in previous versions). One
possible alternative (suggested by BIDS) is group.

bg.session (not used) The character string specifying the session/time variable name. The default is
Time; one alternative (BIDS) is session id.

https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
http://adv-r.had.co.nz/Style.html

22 Chapter 5: Getting started

bg.progress A logical indicating whether to always/never show a progress bar (for functions with the
option). The default is TRUE.

bg.ncpus Integer indicating how many CPU cores to use for parallel operations. The default is
2. This is only a fallback; it is expected that the user registers the appropriate number
themselves (see next section).

Changing any of these options is simple, and can be specified in your .Rprofile or at the start of your
analysis scripts. For example, to use the BIDS defaults, you would include

options(bg.subject_id='participant_id', bg.group='group')

If you would like to use the defaults, you do not need any code.

5.1.3 Loading required packages

This step will be the same regardless of the imaging modality. See System Requirements for a list of
required/recommended packages. The if-else part of the OS check below is unnecessary if you will be using
the same OS every time. I load the most useful packages (e.g., data.table) at the start of every R session by
including the relevant commands in my .Rprofile.

suppressMessages(library(brainGraph))

Check OS version for parallel processing

OS <- .Platform$OS.type

if (OS == 'windows') {
pacman::p_load(snow, doSNOW)

num.cores <- as.numeric(Sys.getenv('NUMBER_OF_PROCESSORS'))

cl <- makeCluster(num.cores, type='SOCK')

clusterExport(cl, 'sim.rand.graph.par')

registerDoSNOW(cl)

} else {
suppressMessages(library(doMC))

registerDoMC(detectCores())

}

Once brainGraph is loaded, you can quickly see all its functions and the package help section:

ls('package:brainGraph')

help(package='brainGraph')

5.1.4 Project data

You will almost certainly want to include covariates for your analyses (e.g., adjust for age, sex, etc.).
Additionally, you may be interested in testing for associations between graph metrics and demographic or
neuropsychological variabes. I show a portion of my covariates below. The Study ID ’s have been changed
and will possibly/probably be character strings in your project.

covars

Study.ID Group Sex Age Scanner

1: 1 Patient F 19.92 Site 1

2: 2 Control F 14.92 Site 1

3: 3 Control M 16.08 Site 1

4: 4 Control M 13.42 Site 1

http://stackoverflow.com/questions/1189759/expert-r-users-whats-in-your-rprofile

5.2 Graph object attributes 23

5: 5 Control F 15.75 Site 1

137: 137 Control F 13.75 Site 2

138: 138 Patient M 16.42 Site 1

139: 139 Control F 16.25 Site 1

140: 140 Control M 16.50 Site 2

141: 141 Control M 16.50 Site 2

str(covars)

Classes 'data.table' and 'data.frame': 141 obs. of 5 variables:

$ Study.ID: chr "1" "2" "3" "4" ...

$ Group : Factor w/ 2 levels "Control","Patient": 2 1 1 1 1 1 1 2 2 2 ...

$ Sex : Factor w/ 2 levels "F","M": 1 1 2 2 1 1 2 2 2 1 ...

$ Age : num 19.9 14.9 16.1 13.4 15.8 ...

$ Scanner : Factor w/ 2 levels "Site 1","Site 2": 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, ".internal.selfref")=<externalptr>

One of the nice things about R is that you don’t need to change a variable such as sex to 0’s and 1’s; it
considers the M and F as factors and can handle them easily. The same goes for subject group names (and
pretty much any other non-numeric variable).

What I consider to be a smart thing to do (regarding covariates files) is to include some kind of “indicator
variable” in your spreadsheet/database of all study subjects, where a 1 means the subject has acceptable
data for that [MRI sequence, neuropsychological test, experiment, etc.], and a 0 otherwise. You can see this
in the first code block of Tractography and fMRI, in which I subset the covars.all data table using

tract == 1 . I then only select the first 5 columns, as those contain the only relevant covariates I wanted
for that application. Later, if I choose to, for example, test for correlation between vertex betweenness and
full-scale IQ (FSIQ), I can access that variable easily:

cor.test(btwn, covars.all[tract == 1, FSIQ])

5.1.5 Data Compatibility

The only real requirements for your non-MRI data are that they be in a csv file and that they share a
Study.ID column (or whatever name you specify with the bg.subject id option) with the MRI data. If

you keep your patient data in an Excel file, then it is simple enough to save it as a csv. If you use a database,
it also should be simple; I know that REDcap has an option to output files for use in R and there are packages
for working with SQL.

5.2 Graph object attributes

There are three types of attributes that an igraph graph object can have: graph-, vertex-, and edge-level.

5.2.1 The summary method

The summary method for objects of class brainGraph is different than the method in igraph, but shows

similar information. The default behavior is to print all attributes, separated by attribute type; to show only
some general info, you can include the argument print.attrs=’none’ . The following information is shown;

there are some values that will be automatically expanded (e.g., dk will be printed as Desikan-Killiany).

version A named list with the versions of R, igraph, and brainGraph at the time of graph creation

24 Chapter 5: Getting started

date A character string with the datetime for when the graph was created. The format is the ISO
8601 date standard, uppercase T, and the ISO 8601 time standard.

type Whether the graph is observed or a random graph

atlas The atlas

modality The imaging modality represented by the data

weighting If the graph is weighted, it will print either the value of g$weighting or what the edge

weights represent (e.g., if weighting=’sld’ , it will print Streamline density)

clust.method The clustering (i.e., community detection) method used to calculate communities

density The graph density (percent)

threshold The numeric value used to threshold graphs (if applicable)

Subject ID The Study.ID (taken from the name attribute), if one was supplied to make brainGraph or
make brainGraphList

Group The subject group, if one was supplied

level Either subject, group, or contrast

summary(g.ex)

##

==

Summary for *observed* subject-level graph:

==

##

Software versions

R release: R version 3.6.0 (2019-04-26)

brainGraph: 3.0.0

igraph: 1.2.4.1

Date created: 2020-12-31 06:49:24

Observed or random? Observed

Brain atlas used: Desikan-Killiany

Imaging modality: Cortical thickness

Edge weighting: Unweighted

Clustering method: Louvain (multi-level modularity optimization)

Graph density: 15.76%

Threshold: N/A

Subject ID: N/A

Group: Eg

Graph attributes-----------------------------

##

version Lp diameter vulnerability

sys rich transitivity

date E.global assort

atlas clust.method assort.lobe

level mod assort.lobe.hemi

type density asymm

modality conn.comp spatial.dist

Group max.comp num.hubs

Cp num.tri E.local

5.2 Graph object attributes 25

Vertex attributes----------------------------

##

name degree k.core

lobe comp transitivity

lobe.hemi color.comp E.local

hemi asymm E.nodal

x.mni dist vulnerability

x dist.strength eccentricity

y.mni knn comm

y Lp color.comm

z.mni btwn.cent circle.layout.comm

z hubs GC

color.lobe ev.cent PC

circle.layout lev.cent z.score

Edge attributes-----------------------------

##

color.lobe color.comp dist btwn color.comm

5.2.2 Graph-level attributes

Graph-level attributes can be of any data type (e.g., a character string specifying the atlas used, a numeric
specifying the global efficiency, etc.). They are visible when you print the graph (by typing the object name),

or by typing graph attr names(g.ex)

Using the $ operator, you can access these graph-level attributes; the following example will display the size
and count of the graph’s connected components.2

g.ex$conn.comp

size number

1 68 1

Also of interest may be the rich club coefficient of a graph (see Colizza et al. (16), Zhou and Mondragón (135)).
Briefly, the rich club coefficient is the ratio of edges present to total possible edges in a subgraph with minimum
degree k.3 The following example returns a data.frame for (in this specific example) k = 1, 2, · · · , 16; R is
the rich club coefficient, Nk is the number of vertices present, and Ek is the number of edges present:

g.ex$rich

k phi Nk Ek

1: 1 0.1576 68 359

2: 2 0.1576 68 359

3: 3 0.1610 67 356

4: 4 0.1641 66 352

5: 5 0.1641 66 352

6: 6 0.1687 64 340

7: 7 0.1768 60 313

8: 8 0.1938 52 257

9: 9 0.2068 46 214

10: 10 0.2365 36 149

2Calculated by the igraph function components, and set by set brainGraph attr
3See Rich-club Analysis for more details.

26 Chapter 5: Getting started

11: 11 0.2562 29 104

12: 12 0.2747 14 25

13: 13 0.2143 8 6

14: 14 0.3333 4 2

15: 15 0.0000 2 0

16: 16 NaN 0 0

If you’re working with single-subject graphs, you can use the subject argument to set brainGraph attr.
This will give the graph a name attribute, which is displayed when you print the graph; the name is on the
first line of the output:4

print(g.tmp, full=FALSE)

IGRAPH 5fc817a U--- 68 401 -- Watson, Christopher

+ attr: name (g/c)

g.tmp$name

[1] "Watson, Christopher"

5.2.3 Vertex-level attributes

You can also access vertex-level attributes, using both the V() function and the $ operator (the following
example will display each vertex’s degree).

V(g.ex)$degree

[1] 10 9 11 10 8 12 11 7 14 10 9 4 8 13 12 12 12 10 12 7 12 12 8

[24] 11 13 10 8 8 14 9 14 11 16 10 10 9 8 10 12 7 12 11 12 3 15 8

[47] 11 8 11 13 7 13 10 6 13 12 12 16 13 10 15 6 9 12 14 12 12 9

5.2.4 Edge-level attributes

Finally, you can access edge-level attributes, using both the E() function and the $ operator. First, I show
a sample of the edges; as you can see, the vertex names are joined by double dashes. Then I display edge
betweenness the first several edges (to save space).

E(g.ex)[2:6]

+ 5/359 edges from c3b63b0 (vertex names):

[1] lBSTS--lIPL lBSTS--lITG lBSTS--liCC lBSTS--lLING lBSTS--lpostC

head(E(g.ex)$btwn)

[1] 22.94 12.52 13.84 13.99 14.40 10.96

5.3 Community detection

There are multiple community detection algorithms available in igraph. You can run community detection on
your own or through make brainGraph (or make brainGraphList). Alternatively, you can specify which via

4You will most likely want to use subject ID’s, not real names.

5.4 Plotting 27

the clust.method argument. All clustering functions begin with the string ’cluster ’ ; the function
argument recognizes the remainder of the function name. For example, if you would like to specify the
Walktrap algorithm, you would pass clust.method=’walktrap’ .

The benefit of letting the package choose one automatically is that the appropriate method will be chosen
depending on the type of input graph. There are a few different behaviors:

• By default, the Louvain algorithm (see Ref. Blondel et al. (12)) is applied (mainly because it seems to
be the most popular one for neuroscience studies)

• If you select ’spinglass’ , but the graph is unconnected, then the Louvain algorithm is used.

• The Walktrap algorithm is used if there are any negative edge weights, unless you pass ’spinglass’ .

• If ’edge betweenness’ is selected, the edges are first transformed because this algorithm considers

the edges as distances (not connection strengths).

For general help with communities, type ?communities . For a great demo on community detection (from

which you can get useful code) is accessed by typing demo(community) . A description of some of the

algorithms can be found in this Stack Overflow answer.

To plot the communities with a specific layout, use the following code.5 Here, the function layout_with_fr

uses the Fruchterman-Reingold method, which is a force-directed layout algorithm (41). This is shown in
Figure 5.1.6

class(g.ex) <- 'igraph'

plot(cluster_louvain(g.ex), g.ex, layout=layout_with_fr, vertex.label=NA,

vertex.size=5, edge.width=0.5)

class(g.ex) <- c('brainGraph', class(g.ex))

5.4 Plotting

Plotting graphs is much simpler when using the GUI plot brainGraph gui; however, you can achieve almost
all of its functionality on the command line. For example, the subgraph argument allows you to specify a
condition for which vertices to keep; if you wanted to plot only vertices with degree greater than 10, this
would be subgraph=’degree > 10’ . You can combine multiple conditions, using either & (AND) or |

(OR), e.g., subgraph=’degree > 10 & btwn.cent > 50’ . Plotting a single hemisphere is a “special”

subgraph and can be chosen using the hemi argument. Additonally, you may choose to show a legend for
vertex colors, using the show.legend argument.

5.4.1 MNI152 template

By default, graphs will be plotted over a slice from the mni152 template. I loaded the NIfTI volume (from
FSL) and saved the data in the package. Prior to v3.0.0, this was in the form of a nifti object. To convert
the array with the correct parameters (if you have a reason), use the following code:

suppressMessages(library(oro.nifti))

mni152 <- nifti(brainGraph:::mni152_mat, datatype=4, regular='r', reoriented=TRUE,

scl_slope=1, quatern_c=1, descrip='FSL3.3', sform_code=4, xyzt_units=10,

srow_x=c(-2, 0, 0, 90), srow_y=c(0, 2, 0, -126), srow_z=c(0, 0, 2, -72),

5To avoid seeing the polygons that highlight each group, include the argument mark.groups=NULL .
6For more layouts, type the command ?layout (include the trailing underscore).

http://stackoverflow.com/a/9478989/3357706

28 Chapter 5: Getting started

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

Figure 5.1: Communities plot, Fruchterman-Reingold layout.

pixdim=c(-1, 2, 2, 2, 1, 1, 1, 1), qoffset_x=90, qoffset_y=-126, qoffset_z=-72)

mni152@cal_max <- 8000

mni152@cal_min <- 3000

mni152@qform_code <- 4

mni152@pixdim[1] <- -1

5.4.2 Axial

Figure 5.2 shows an example plot of an axial view7; here, vertex size is proportional to vertex degree. The
vertex color is based on community (module) membership.

plot(g.ex, vertex.label=NA, vertex.size='degree',

vertex.color='color.comm', edge.color='color.comm', main='Toy graph')

5.4.3 Sagittal

Figure 5.3 shows an example of left and right sagittal views. These only show the intra-hemispheric connections.
Here, lobe colors are based on lobe membership.

7Axial images are always in neurological orientation

5.4 Plotting 29

Figure 5.2: Axial view; vertex colors signify community membership.

! New in v3.0.0

You can include the label argument to include text labels in the figures. Here, I include A) and B).

plot(g.ex, plane='sagittal', hemi='L', label='A) ',

vertex.label=NA, vertex.size=10, vertex.color='color.lobe',

edge.color='color.lobe', edge.width=1, main='Toy graph (L)')

plot(g.ex, plane='sagittal', hemi='R', label='B) ',

vertex.label=NA, vertex.size=10, vertex.color='color.lobe',

edge.color='color.lobe', edge.width=1, main='Toy graph (R)')

5.4.4 Circular

Figure 5.4 shows a circular plot. As the legend indicates, vertex color indicates lobe membership. Vertices of
the left hemisphere are located on the left half of the plot, frontal lobe vertices at the front, etc.

plot(g.ex, plane='circular', vertex.label=NA, vertex.size=5,

vertex.color='color.lobe', edge.color='color.lobe',

edge.width=1, show.legend=TRUE)

30 Chapter 5: Getting started

Figure 5.3: Sagittal view; vertex colors signify lobe membership.

Figure 5.4: Circular view; vertex colors signify lobe membership.

Part III

Graph Creation

Chapter 6: Structural covariance networks . 32

Chapter 7: Tractography and fMRI . 41

31

6

Structural covariance networks

6.1: Overview . 32

6.2: Import the data . 33

6.3: Model residuals . 34

6.4: Data checking . 35

6.5: Correlation Matrix and Graph Creation . 37

6.6: Getting measures of interest . 38

6.7: Long and wide data tables . 40

This chapter shows how to create graphs of structural covariance networks. The code is specific to Freesurfer

and cortical thickness, but will also work with volume, surface area, and local gyrification index (LGI). It is
possible that structural MRI data from other software packages are compatible, but (currently) the data files
will have to conform to the outputs from Freesurfer.

6.1 Overview

The following is the sequence of steps for structural covariance network analysis. Each of these is discussed in
subsequent sections of this chapter.

1. Load data and covariates

2. Generate model residuals (and check the QQ plots) (this is optional; you may also correlate the raw
volumetric data)

3. Create correlation matrices (of residuals or raw volumetric data) for a number of densities/thresholds

4. Create a set of graphs, one for each group and density/threshold

5. Put the data into tables for easy exploration of graph- and vertex-level metrics (e.g., global efficiency,
vertex degree, etc.)

6.1.1 Complete example

The following code block shows an example of a complete script for performing the above steps. Note that
there are multiple ways of doing it, but this should get you started.

32

6.2 Import the data 33

1. Import data & set up variables

datadir <- '/home/user/data'

exclude.subs <- c('sub005', 'sub013')

raw_data <- import_scn(datadir, atlas='dk', modality='thickness',

exclude.subs=exclude.subs)

A hack to get the variables into the workspace

invisible(lapply(seq_along(raw_data), function(x)

assign(names(raw_data)[x], eval(raw_data[[x]]), envir=.GlobalEnv)))

covars <- fread(file.path(datadir, 'covars.csv'))

covars <- covars[!Study.ID %in% exclude.subs]

grps <- covars[, levels(factor(Group))]

2. Get and check residuals

myResids <- get.resid(lhrh, covars=covars, exclude.cov='Group')

residPlots <- plot(myResids)

ml <- gridExtra::marrangeGrob(residPlots, nrow=3, ncol=3)

ggsave('residuals.pdf', ml)

system('xdg-open residuals.pdf')

3. Correlation matrices

densities <- seq(0.05, 0.20, 0.01)

corrs <- corr.matrix(myResids, densities=densities)

4. Create graph lists and calculate graph metrics

g <- lapply(seq_along(densities), function(x)

make_brainGraphList(corrs[x], modality='thickness'))

5. data.tables of the metrics

dt.G <- rbindlist(lapply(g, graph_attr_dt))

dt.V <- rbindlist(lapply(g, vertex_attr_dt))

6.2 Import the data

The following code block is what I put in my 01_load_project.R script; however, this script will have to be
project-specific. The main purpose is to import the data through import scn, which will do a few things:

• Changes the first column name to match the subject ID string; i.e., the value of
getOption(’bg.subject id’) .

• Removes the mean thickness (or volume, area, etc.) column(s) (if present)

• For subcortical gray matter (SCGM): keeps only the first 15 columns (i.e., the subject ID column and
the 14 SCGM data columns). Requires asegstats.csv to be in the same directory as the other files.

• Abbreviates the region names, for the DK and DKT atlases

• Removes subjects to be excluded from the data tables

• For atlases including SCGM: finds “missing” subjects; i.e., those that are not present in both the cortical
and subcortical data files

34 Chapter 6: Structural covariance networks

You will need to have a few files in the datadir:

• ${parcellation}_lh_${modality}.csv: See Structural data from Freesurfer for creating this file.

• ${parcellation}_rh_${modality}.csv

• asegstats.csv: Only required if you are including subcortical data; e.g., subcortical volumes to be
analyzed along with cortical thickness.

datadir <- '~/Dropbox/packages/brainGraph.other/data/Patient'

covars <- fread(file.path(datadir, 'covars.csv'), stringsAsFactors=TRUE)

covars[, Study.ID := as.character(Study.ID)]

grps <- covars[, levels(Group)]

If you need to exclude subjects, specify here

Best to use their Study.ID's for record-keeping

exclude.subs <- NULL #c(2, 25, 30)

raw_data <- import_scn(datadir=datadir, atlas='dk', modality='thickness',

exclude.subs=exclude.subs)

invisible(lapply(seq_along(raw_data), function(x)

assign(names(raw_data)[x], eval(raw_data[[x]]), envir=.GlobalEnv)))

In case one density in particular is of interest, here 10%

densities <- seq(0.05, 0.20, 0.01)

N <- which(abs(densities - 0.10) < 0.001)

6.2.1 Custom atlas

To use a custom atlas, you must:

1. Specify atlas=’custom’ as the first argument

2. Supply the name of the R object (the data.table) for the custom atlas you would like to use.

3. Make sure the data.table is loaded in your R environment and matches the structure of the atlases in
brainGraph (see Compatible atlases for details)

6.3 Model residuals

The next step is to get the model residuals. You can perform linear models on a per-group basis or across all
groups at once. get.resid calculates the studentized residuals (sometimes called leave-one-out residuals).1

6.3.1 Function arguments

dt.vol A data.table of the structural data; this should be the object lhrh which is output by
import scn.

covars A data.table of covariates. It must have a column for both the subject ID and group, which
depend on the value of getOption(’bg.subject id’) and getOption(’bg.group’) ,

respectively.

method Here you can select to get residuals from a single linear model (the default; the option
’comb.groups’) or a separate model for each group (’sep.groups’).

1In my data, the correlation between these and the standardized residuals (for all regions/models) was no lower than 0.9993.

6.4 Data checking 35

use.mean Logical indicating whether or not to include the mean per-hemispheric structural measure in
the models. Default: FALSE

exclude.cov A character vector of columns in covars that you would like to exclude from the models (if
any).

6.3.2 Return value

It returns an object of class brainGraph resids, which has three elements:

data A data.table with both the input volumetric data and the covariates

X The design matrix. If you chose to run separate linear models for each group, and/or to
include the mean hemispheric structural measure, this will be a list of matrices.

method

use.mean

resids.all A “wide” data.table of residuals for each vertex. It is ordered first by Group (to more
easily work with functions in the next step of the workflow).

Group Character vector with the group names

atlas

6.3.3 Example

Here I accept the default arguments except that I choose to exclude Group from the models.

resids <- get.resid(lhrh, covars=covars, exclude.cov='Group')

If you would like to get the residuals for each group separately, you simply include method=’sep.groups’ .

6.4 Data checking

It is always useful to check the quality of your data (which should have been done at a previous step). The
plot method for structural covariance residuals plots a qqplot for the desired region(s) (see the Wikipedia

page if you are unfamiliar with qqplots); these are useful for checking normality.

6.4.1 Summary

On visual inspection of my data, for rSMAR (right supramarginal gyrus), I saw that there is one sample
quantile (i.e., one subject) with a value less than ≈ −3; this is very likely to be an outlier. To check which
subject this is, you can look at the summary method output. When I looked at the subject’s brain MRI, it

turns out he/she had a stroke in the right supramarginal/inferior parietal lobe.
If you do not include a value for the regions argument, then the function prints outlier information for

all regions (not shown).

summary(resids, region='rSMAR')

##

=====================================

Structural covariance residuals

=====================================

of outliers for region rSMAR:

https://en.wikipedia.org/wiki/Q-Q_plot
https://en.wikipedia.org/wiki/Q-Q_plot

36 Chapter 6: Structural covariance networks

6

Subjects that are outliers:

[1] "029" "075" "098" "103" "125" "131"

Outliers

Study.ID Group Region resids

1: 125 Patient rSMAR -3.264

2: 103 Control rSMAR -3.173

3: 075 Control rSMAR -2.462

4: 029 Control rSMAR -2.050

5: 131 Control rSMAR 2.073

6: 098 Patient rSMAR 2.080

6.4.2 Plot

As an example of the plotting output, Figure 6.1 shows the qqplot for one region; one panel is the “standard”
output, and the second shows points colored by group. In both, “outliers” (those further than 2 SD’s from
the mean) are triangles. The outliers are also marked with their number in the data.table of residuals.

plot(resids, region='rSMAR')[[1]]

plot(resids, region='rSMAR', cols=TRUE)[[1]]

125
103

075

029

131 098

●

●

●

●
●

●

●●
●

●●

●●●
●

●●
●●●●●

●
●●

●●
●
●●●

●●
●●

●●●
●●●

●
●●●●●

●●●●
●●●●

●●
●●●●●

●●
●●

●●
●●●

●●
●●

●
●●

●●●
●

●
●●●●●●

●●
●●●●

●●
●●

●
●●

●●●●●
●●●●●

●●●●●

●
●●●●

●●●●●
● ●

●

● ●
●

●

●

−
2

0
2

−2 −1 0 1 2
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Normal Q−Q: rSMAR

125
103

075

029

131 098

●

●

●

●
●

●

●●
●

●●

●●●
●

●●
●●●●●

●
●●

●●
●
●●●

●●
●●

●●●
●●●

●
●●●●●

●●●●
●●●●

●●
●●●●●

●●
●●

●●
●●●

●●
●●

●
●●

●●●
●

●
●●●●●●

●●
●●●●

●●
●●

●
●●

●●●●●
●●●●●

●●●●●

●
●●●●

●●●●●
● ●

●

● ●
●

●

●

−
2

0
2

−2 −1 0 1 2
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Normal Q−Q: rSMAR

Figure 6.1: QQ plot of model residuals.

For all regions, you should save the plots to a multi-page PDF using the function marrangeGrob from the
gridExtra package:

6.5 Correlation Matrix and Graph Creation 37

residPlots <- plot(resids)

ml <- gridExtra::marrangeGrob(residPlots, nrow=3, ncol=3)

ggsave('residuals.pdf', ml)

6.5 Correlation Matrix and Graph Creation

Next, correlate between pairs of regions for each group using corr.matrix. Simply use the output of
get.resid for the first argument here.

The function corr.matrix has an argument, density, which indicates the density of the desired graph. So,
if you want a graph with 10% of all possible connections, this value should be 0.1. To access the (correlation)
threshold used, see code below.

corrs <- corr.matrix(resids, densities=densities)

corrs$thresholds

Control Patient

[1,] 0.5362 0.4846

[2,] 0.5192 0.4685

[3,] 0.5049 0.4560

[4,] 0.4936 0.4380

[5,] 0.4800 0.4234

[6,] 0.4714 0.4118

[7,] 0.4604 0.4030

[8,] 0.4520 0.3958

[9,] 0.4460 0.3869

[10,] 0.4353 0.3747

[11,] 0.4291 0.3667

[12,] 0.4218 0.3581

[13,] 0.4126 0.3498

[14,] 0.4063 0.3409

[15,] 0.3971 0.3360

[16,] 0.3901 0.3284

Alternatively, you can skip the step in the previous section and just correlate the raw cortical thickness values.
I don’t recommend this, though, as variables like age and sex have known effects on cortical thickness. Simply
include what=’raw’ in the call to corr.matrix.

6.5.1 Excluding regions

If you wanted to exclude some regions from your analysis (e.g., if you weren’t interested in the L and R
transverse temporal), use the following code:

exclude.reg <- c('lTT', 'rTT')

corrs <- corr.matrix(resids, densities=densities, exclude.reg=exclude.reg)

6.5.2 Graph creation

Then create the graphs, which will be in brainGraphList objects. The default behavior of

make brainGraphList will be to also set all graph-, vertex-, and edge-level attributes; to change the behavior,

use set attrs=FALSE .

38 Chapter 6: Structural covariance networks

Note

Compare the new code in the next block with the old code here:

g <- lapply(corrs, function(x)

apply(x$r.thresh, 3,

graph_from_adjacency_matrix, mode='undirected', diag=F))

g <- Map(function(x, y) llply(x, set_brainGraph_attr, atlas=atlas,

modality=modality, group=y, .progress='text'),

g, as.list(grps))

Create simple, undirected graphs for each group

g <- lapply(seq_along(densities), function(x)

make_brainGraphList(corrs[x], atlas='dk',

modality='thickness', .progress=F))

If you prefer that your graphs are weighted by the correlation coefficient, then you simply need to add
weighted=TRUE to the above function call.

! New in v3.0.0

An alternate method of getting a subgraph of e.g., the left hemisphere only, is to use the subnet

argument:

regions.lh <- get(atlas)[hemi == 'L', name]

g.lh <- lapply(seq_along(densities), function(x)

make_brainGraphList(corrs[x], atlas='dk',

modality='thickness', subnet=regions.lh))

6.6 Getting measures of interest

There are a number of graph measures that may be of interest to you, so there are a couple of helper
functions to make plotting and exploring easier. graph attr dt will get graph-level (global) attributes into a
data.table, ordered by graph density. Similarly, vertex attr dt will get vertex-level attributes; for multiple
densities, they are combined (by row) into a single data.table.

dt.G <- rbindlist(lapply(g, graph_attr_dt))

dt.V <- rbindlist(lapply(g, vertex_attr_dt))

setkey(dt.V, density, Group)

Maximum degree for each Group & density

dt.V[density < 0.1, .SD[which.max(degree), .(region, degree)],

by=.(Group, density)]

Group density region degree

1: Control 0.05004 rIPL 12

2: Patient 0.05004 rSPL 14

6.6 Getting measures of interest 39

3: Control 0.06014 rSTG 14

4: Patient 0.06014 rSPL 15

5: Control 0.07024 rSTG 16

6: Patient 0.07024 lSPL 15

7: Control 0.08033 rPCUN 17

8: Patient 0.08033 lSPL 16

9: Control 0.09043 rSTG 19

10: Patient 0.09043 lSFG 17

List the regions with the highest participation coefficient at one density

dt.V[abs(density - densities[N]) < .001,

.SD[order(-PC, -degree)[1:5],.(density, region, lobe, hemi, degree, PC)],

by=Group]

Group density region lobe hemi degree PC

1: Control 0.1001 rpTRI Frontal R 14 0.6173

2: Control 0.1001 rLOF Frontal R 10 0.6100

3: Control 0.1001 rrMFG Frontal R 11 0.5868

4: Control 0.1001 rpORB Frontal R 15 0.5556

5: Control 0.1001 rparaC Frontal R 13 0.5503

6: Patient 0.1001 rcMFG Frontal R 17 0.4394

7: Patient 0.1001 lSFG Frontal L 20 0.4375

8: Patient 0.1001 rSFG Frontal R 17 0.4325

9: Patient 0.1001 rSMAR Parietal R 11 0.3884

10: Patient 0.1001 rpreC Frontal R 13 0.3728

Count vertices with betweenness > mean + sd (i.e. 'hub' regions)

dt.V[round(density, 2) == densities[N] & hubs > 0, .N, by=Group]

Group N

1: Control 34

2: Patient 34

Mean degree by 'Group' and 'lobe', for one density

dt.V[round(density, 2) == densities[N],

.(mean.deg=mean(degree)),

by=.(Group, lobe)]

Group lobe mean.deg

1: Control Temporal 6.833

2: Control Cingulate 0.250

3: Control Frontal 6.409

4: Control Occipital 5.375

5: Control Parietal 13.000

6: Control Insula 8.500

7: Patient Temporal 5.444

8: Patient Cingulate 0.875

9: Patient Frontal 8.318

10: Patient Occipital 6.250

11: Patient Parietal 10.800

12: Patient Insula 5.000

40 Chapter 6: Structural covariance networks

6.7 Long and wide data tables

To make some plotting functions and data exploration easier, it’s important to “melt” the data into “long”
format (see Wickham (127)). The “melt” operation is an example of data reshaping. This step is usually
optional, but can make data exploration simpler.

For a given density, vertex-wise network measures

charCols <- names(which(sapply(dt.V, is.character)))

dt.V.long <- melt(dt.V, id.vars=c('density', charCols))

Number of rows = (number of vertices) * (number of variables)

dt.V.long[seq(1, nrow(dt.V.long), nrow(get(atlas)))]

density region lobe hemi atlas modality Group variable value

1: 0.05004 lBSTS Temporal L dk thickness Control degree 2.00

2: 0.05004 lBSTS Temporal L dk thickness Patient degree 1.00

3: 0.06014 lBSTS Temporal L dk thickness Control degree 2.00

4: 0.06014 lBSTS Temporal L dk thickness Patient degree 1.00

5: 0.07024 lBSTS Temporal L dk thickness Control degree 2.00

700: 0.18042 lBSTS Temporal L dk thickness Patient threshold 0.18

701: 0.19008 lBSTS Temporal L dk thickness Control threshold 0.19

702: 0.19008 lBSTS Temporal L dk thickness Patient threshold 0.19

703: 0.20018 lBSTS Temporal L dk thickness Control threshold 0.20

704: 0.20018 lBSTS Temporal L dk thickness Patient threshold 0.20

Example: melting the global network measures data.table

Number of rows = (number of densities) * (number of global measures)

char_cols <- names(which(sapply(dt.G, is.character)))

(dt.G.long <- melt(dt.G, c('density', char_cols)))

density atlas modality Group variable value

1: 0.05004 dk thickness Control threshold 0.05000

2: 0.05004 dk thickness Patient threshold 0.05000

3: 0.06014 dk thickness Control threshold 0.06000

4: 0.06014 dk thickness Patient threshold 0.06000

5: 0.07024 dk thickness Control threshold 0.07000

540: 0.18042 dk thickness Patient vulnerability 0.06416

541: 0.19008 dk thickness Control vulnerability 0.02699

542: 0.19008 dk thickness Patient vulnerability 0.06290

543: 0.20018 dk thickness Control vulnerability 0.02603

544: 0.20018 dk thickness Patient vulnerability 0.06613

7

Tractography and fMRI

7.1: Setting up . 41
7.2: Import, normalize, and filter matrices for all subjects . 42
7.3: Graph creation . 45
7.4: Graph- and vertex-level measures . 47
7.5: Example commands . 47

This section will list the code needed to get fdt network matrix and waytotal into R so you can create and work
with graphs. This example code uses the dkt.scgm atlas and 2 subject groups. I used FSL for DTI-related
processing; see relevant references (8, 9, 60, 61).

Note

The information in this chapter is not specific to FSL, nor to DTI tractography. The code is applicable
to any set of single-subject graphs. If you use different software with different outputs, just adjust the
code (e.g., filenames) accordingly. I call the covariates object covars.dti simply because I don’t want
it to be over-written if I am loading data from multiple modalities concurrently and the covariates set
is different for each. In my fMRI scripts, I call it covars.fmri.

7.1 Setting up

First, as mentioned in Setting up files for your project, you will need to load the required packages. Then,
you set some initial variables that will depend on your project, data, directory structure, etc.

7.1.1 Tractography

The files containing connectivity matrices must contain the Study.ID’s for your study in the file names. For
example, the directory structure might look like:

sub001-fdt_network_matrix

sub001-sizes.txt

sub001-waytotal

sub002-fdt_network_matrix

sub002-sizes.txt

sub002-waytotal

etc.

41

42 Chapter 7: Tractography and fMRI

The *-sizes.txt files contain the ROI volume (in # of voxels) for each of the 76 ROI’s (i.e., it contains a
single column vector with 76 elements). The waytotal files have the same format. The fdt network matrix
files are output by probtrackx2 and are 76× 76 matrices (in this example).

You can place the following code in a script, e.g., 01_load_DTI.R. Note again that these files are not required;
if you use a different software for tractography (or for fMRI), just change the relevant lines in the following
code block.

#===

These variables need to be set correctly before any data analysis is done

#===

grps <- c('Control', 'Patient')

Get all relevant filenames

datadir <- '/home/cwatson/probtrackx_results'

covars.all <- fread(file.path(datadir, 'covars.all.csv'))

covars.dti <- covars.all[tract == 1, 1:5, with=F]

covars.dti[, Group := as.factor(Group)]

covars.dti[, Scanner := as.factor(Scanner)]

setkey(covars.dti, Study.ID)

matfiles <-

list(A=list.files(datadir, pattern='fdt_network_matrix', full.names=T),

way=list.files(datadir, pattern='waytotal', full.names=T),

size=list.files(datadir, pattern='sizes.txt', full.names=T))

inds <- lapply(grps, function(x) covars.dti[Group == x, which=TRUE])

Output directory to save the data

today <- format(Sys.Date(), '%Y-%m-%d')

savedir <- file.path('/home/cwatson/brainGraph', today)

7.1.2 fMRI

The code for resting-state fMRI is almost exactly the same, except the matrix files are different. The following
code example is using the outputs of DPABI:

matfiles$A <- list.files(datadir, 'ROICorrelation_[a-z]+.*.txt', full.names=T)

7.2 Import, normalize, and filter matrices for all subjects

Now we will load all the relevant data from the files provided, and normalize the connection matrices based
on what you want (e.g., divide every entry by the corresponding waytotal). For resting-state fMRI, the
thresholds will likely be different (e.g., correlation coefficients), or you may choose to threshold in such a way
that the graphs have a specific density (but see (116)). Either way, the same function is used. In this section,
I describe the inputs and outputs of create mats.

7.2 Import, normalize, and filter matrices for all subjects 43

7.2.1 Function arguments

! New in v3.0.0

You can also specify directories and/or patterns for the A.files and div.files arguments. In
addition to supplying a character vector of filenames, you can:

• Specify a single character string naming the directory in which the files exist. This will load all
files in the directory.

• Specify a named list in which the names match arguments to list.files. For example,
this may be list(path=’/data/probtrack results’, pattern=’.*fdt network matrix’)

. You may also specify recursive=TRUE to search all child directories.

A.files A character vector of the filenames containing the connectivity matrices (and see above).

modality A character string; either dti (default) or fmri.

divisor A character string specifying how to normalize the matrices. Either none (default), waytotal,
size (normalize by average size of ROI pairs), or rowSums (normalize by the row sums of the connection
matrix). Ignored if modality=’fmri’ .

div.files Character vector of the filenames of the files containing the normalization factor (e.g., the waytotal
files from FSL’s probtrackX2). Ignored if divisor=’none’ .

threshold.by Character string with 5 possible options. The 3rd and 4th options will enforce the same
connections across all study subjects.

consensus Perform “consensus-based” thresholding; i.e., keep connections that are above a given
threshold for a certain percentage of subjects in each group. The default value for
sub.thresh of 0.5 means it will keep connections if they are present in at least 50% of
subjects. See de Reus and van den Heuvel (24).

density Threshold the matrices such that they result in a specific graph density. The values given
to mat.thresh must be between 0 and 1. See van den Heuvel et al. (116).

mean You may choose to specify a set of thresholds τ (which you would supply to mat.thresh)
and keep connections only if

mean(Aijk) + 2× SD(Aijk) > τ

where Aijk is a connectivity matrix, and k indexes Subject. See for example (14, 43).

consistency Perform “consistency-based” thresholding (94). Similar to specifying density, you supply
the desired graph densities to mat.thresh, and the matrices are thresholded to keep the
most consistent connections across all study subjects (as determined by the coefficient of
variation).

raw Threshold each subject individually, irrespective of group membership. Ignores the
sub.thresh argument.

mat.thresh Numeric vector of the thresholds to apply. See the description for threshold.by for how this
is applied. Default: 0 . These values may end up being arbitrary, but with deterministic tractography
you may choose streamline counts; for probabilistic tractography, this may be some measure of streamline
density or connectivity probability ; and with resting-state fMRI you may choose to threshold based on
correlation coefficients.

sub.thresh Numeric (between 0 and 1); only valid if threshold.by=’consensus’ . Default: 0.5

44 Chapter 7: Tractography and fMRI

inds List (number of elements equal to the number of groups) containing integer vectors; the integers
should represent the indexes for each group, and the length of each individual vector should equal the
number of subjects per group. For example, if you have 3 groups of 12 subjects each, this would be:
inds=list(1:12, 13:24, 25:36) .

algo Character string specifying the tractography algorithm used; either probabilistic (the default) or
deterministic. Ignored if modality=’fmri’ .

P Integer; the number of samples per voxel for probabilistic tractography (default: 5000). Only valid if

algo=’probabilistic’ .

... Other arguments passed to symmetrize. Here you can pass the argument symm.by which tells the

function how to symmetrize the matrices. The default in igraph is to take the maximum of {Aij , Aji}, so
the default option is symm.by=’max’ . You may also specify min or avg .

7.2.2 Return value

create mats returns a list (of lists) of arrays. I use the following abbreviations:

Nv The # of vertices in the graph

Ns The # of subjects (total, across all groups)

Ng The # of groups in the study

Nτ The # of thresholds applied

Most of the elements in the return object are lists; otherwise, they are 3D (numeric) arrays.

A The raw connection matrices (from e.g., fdt network matrix). Dimensions of this array
are Nv ×Nv ×Ns.

A.norm The normalized connection matrices (e.g., A ÷ waytotal). Dimensions are the same
as for A. This is different from A only if modality=’dti’ ; further, for deterministic

tractography only if divisor=’size’ .

A.bin List of binarized matrices based on some threshold. The number of elements in the list
equals the number of thresholds, i.e., Nτ arrays of size Nv × Nv × Ns. Only valid if
threshold.by=’consensus’

A.bin.sums A list of 3-d arrays, in which each entry represents the total number of subjects with that
connection present (from A.bin). This will be used to threshold by % of subjects. The
number of elements in this list equals the number of thresholds; the extent of the arrays
equals the number of groups. So, there are Nτ arrays of Nv ×Nv ×Ng arrays. Only valid
if threshold.by=’consensus’ .

A.inds A list of 3-d binary arrays, in which a 1 indicates that a connection is present for that
group. The dimensions are the same as for A.bin.sums. Only valid for consensus- and
consistency-based thresholding.

A.norm.sub A list of 3-d arrays with the same dimensions as A.bin; i.e., Nτ arrays of size Nv×Nv×Ns.
However, the connections which were deemed absent (i.e., if too few subjects have the
connection) have been replaced by 0. All of these matrices will be symmetrized based on
the value given to symm.by . Furthermore, the order along the 3rd dimension matches

that of the input matrix files (i.e., the input argument A.files), and therefore also
the raw matrices and normalized matrices in A and A.norm, respectively. (Thanks to
@seantma for pointing out the bug that led to this fix!)

A.norm.mean A list of 3-d arrays with the same dimensions as A.bin.sums and A.inds. Each matrix
in this list is the corresponding group average (based on A.norm.sub).

7.3 Graph creation 45

7.2.3 Code example

First, I set the subject threshold to 0.5, meaning I will only accept connections which are present in at least
50% of the subjects of a given group. If you do not want to impose any subject constraint, set equal to 0.
The matrix threshold is determined by the variable thresholds, which may end up being arbitrary (i.e., it
will depend on the tractography algorithm and the actual values of the matrices, and would be different if you
used correlations for fMRI). For deterministic tractography, this could be equal to the number of streamlines
connecting two ROI’s (e.g., an integer between 1 and 10, or higher).

modality <- 'dti'

thresholds <- rev(seq(0.001, 0.01, 0.001))

sub.thresh <- 0.5

divisor <- 'waytotal'

my.mats <- create_mats(matfiles$A, modality=modality, divisor=divisor,

div.files=matfiles$way, mat.thresh=thresholds,

sub.thresh=sub.thresh, inds=inds)

A.norm.sub <- my.mats$A.norm.sub

A.norm.mean <- my.mats$A.norm.mean

7.2.4 Applying the same thresholds to other matrices

In the case where you have connectivity matrices in which the entries are from the same subjects but are
a different metric (e.g., in DTI tractography streamline count and mean FA), you can use the function
apply thresholds to threshold the second set by the first. See the following code block and Ref. (69).

matfiles$W <- list.files(datadir, pattern='.*W.txt', full.names=T)

if (length(matfiles$W > 0)) {
W.mats <- apply_thresholds(A.norm.sub, A.norm.mean, matfiles$W, inds)

W.norm.sub <- W.mats$W.norm.sub

W.norm.mean <- W.mats$W.norm.mean

}

7.3 Graph creation

We now create graphs from the matrices from the previous section, and calculate the relevant attributes for
these graphs.

In this case, I will use the list of arrays stored in A.norm.sub (which contains the arrays thresholded by
both the % of subjects with a connection, and by a series of thresholds). The list g will have multiple

brainGraphList objects (1 for each threshold). You may want to place the following code in its own script,
e.g., 02_create_graphs_DTI.R.

46 Chapter 7: Tractography and fMRI

Note

Compare the old code in this box to the new code in the block that follows. This is meant to highlight
the improvements in v3.0.0.

g.group <- g <- fnames <- vector('list', length=length(grps))

for (i in seq_along(grps)) {
for (j in seq_along(thresholds)) {
foreach (k=seq_along(inds[[j]])) %dopar% {

g.tmp <- graph_from_adjacency_matrix(A.norm.sub[[j]][, , inds[[i]][k]],

mode='undirected', diag=F, weighted=T)

g.tmp <- set_brainGraph_attr(g.tmp, atlas, modality='dti',

weighting='sld', threshold=thresholds[j],

subject=covars.dti[groups[i], Study.ID[k]], group=grps[i],

use.parallel=FALSE, A=A.norm.sub[[j]][, , inds[[i]][k]])

saveRDS(g.tmp, file=paste0(savedir,

sprintf('g%i_thr%02i_subj%03is', i, j, k, '.rds')))

}
}

Group mean weighted graphs

g.group[[i]] <- lapply(seq_along(thresholds), function(x)

graph_from_adjacency_matrix(A.norm.mean[[x]][[i]],

mode='undirected', diag=F,

weighted=T))

g.group[[i]] <-

llply(seq_along(thresholds), function(x)

set_brainGraph_attr(g.group[[i]][[x]], atlas,

modality='dti', weighting='sld',

threshold=thresholds[x], group=grps[i],

A=A.norm.mean[[x]][[i]], use.parallel=FALSE),

.parallel=TRUE)

}

atlas <- 'dkt.scgm'

g <- g.group <- vector('list', length(thresholds))

for (j in seq_along(thresholds)) {
g[[j]] <- make_brainGraphList(A.norm.sub[[j]], atlas, modality=modality,

weighting='sld', threshold=thresholds[j],

weighted=TRUE, gnames=covars.dti$Study.ID,

groups=covars.dti$Group)

g.group[[j]] <- make_brainGraphList(A.norm.mean[[j]], atlas, modality=modality,

weighting='sld', threshold=thresholds[j],

weighted=TRUE, gnames=grps)

}
saveRDS(g, file=file.path(savedir, 'g.rds'), compress='xz')

saveRDS(g.group, file=file.path(savedir, 'g.group.rds'), compress='xz')

7.4 Graph- and vertex-level measures 47

7.4 Graph- and vertex-level measures

Just as we did in Getting measures of interest, we will create data.table’s of graph- and vertex-level measures
for further analysis. (This is also much more compact in the latest version.)

dt.V <- rbindlist(lapply(g, vertex_attr_dt))

dt.G <- rbindlist(lapply(g, graph_attr_dt))

dt.V.group <- rbindlist(lapply(g.group, vertex_attr_dt))

dt.G.group <- rbindlist(lapply(g.group, graph_attr_dt))

dt.V.group$sub.thresh <- dt.G.group$sub.thresh <- dt.G$sub.thresh <-

dt.V$sub.thresh <- sub.thresh

setorderv(dt.V, 'threshold', -1)

setorderv(dt.G, 'threshold', -1)

idvars <- c('modality', 'atlas', 'weighting', 'sub.thresh', 'threshold', 'Group')

dt.G.long <- melt(dt.G, id.vars=c(idvars, 'Study.ID', 'density'))

dt.G.group.long <- melt(dt.G.group, id.vars=idvars)

7.5 Example commands

Similar to Getting measures of interest, here are some example commands for looking at your data.

Mean degree for the group-averaged graphs

dt.V.group[, .(mean.deg=mean(degree)), by=.(Group, threshold, lobe)]

Group threshold lobe mean.deg

1: Control 0.005 SCGM 16.71

2: Control 0.005 Occipital 10.88

3: Control 0.005 Temporal 11.14

4: Control 0.005 Insula 22.00

5: Control 0.005 Parietal 10.70

206: Patient 0.004 Temporal 10.93

207: Patient 0.004 Insula 22.00

208: Patient 0.004 Parietal 10.40

209: Patient 0.004 Frontal 11.50

210: Patient 0.004 Cingulate 13.25

t-test of nodal efficiency for Frontal lobe vertices

dt.V.group[lobe == 'Frontal',

.(p=t.test(E.nodal ~ Group)$p.value),

by=threshold]

threshold p

1: 0.005 2.482e-01

2: 0.015 2.373e-01

3: 0.025 1.735e-01

4: 0.035 9.670e-02

5: 0.045 1.577e-01

6: 0.055 3.196e-02

48 Chapter 7: Tractography and fMRI

7: 0.065 1.824e-05

8: 0.075 8.523e-03

9: 0.085 5.396e-02

10: 0.095 2.816e-03

11: 0.105 2.775e-01

12: 0.001 3.575e-01

13: 0.002 2.985e-01

14: 0.003 3.049e-01

15: 0.004 4.160e-01

We can also create a plot of the global graph measures across the thresholds we applied, shown in Figure 7.1.
Here I use my function plot global, specifying that I want to plot across threshold instead of density.

This uses the stat smooth function, which creates a line plot along with a smoother.

exclude.vars <- c('assortativity.lobe.hemi', 'max.comp', 'diameter.wt',

'clique.num', 'num.tri')

plot_global(g.l, xvar='threshold', exclude=exclude.vars)

Edge distance Strength

assortativity.lobe Asymmetry index # of hubs Local eff. Vulnerability

Transitivity assortativity Local eff. (wt) Global eff. (wt) Modularity (wt)

Clustering coeff. Char. path length Global eff. Modularity Diameter

0.
00

0
0.

02
5

0.
05

0
0.

07
5

0.
10

0
0.

00
0

0.
02

5
0.

05
0

0.
07

5
0.

10
0

0.
00

0
0.

02
5

0.
05

0
0.

07
5

0.
10

0
0.

00
0

0.
02

5
0.

05
0

0.
07

5
0.

10
0

0.
00

0
0.

02
5

0.
05

0
0.

07
5

0.
10

0

5

10

15

20

0.60

0.65

0.70

0.75

0.05

0.10

0.5

0.6

0.7

0.030

0.035

0.040

0.045

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.05

0.06

0.07

0.08

10

12

14

2

4

6

0.0

0.1

0.2

0.3

−0.05

0.00

0.05

0.10

0.5

0.6

0.7

0.8

0.9

0.2

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.2

0.3

0.4

0.5

0.6

25

30

35

40

45

threshold

va
lu

e

get(gID) Control Fontan

Figure 7.1: Global graph measures vs. density, DTI data.

Part IV

Group Analyses: GLM-based

Chapter 8: Vertex-wise group analysis (GLM) . 50

Chapter 9: Multi-threshold permutation correction . 71

Chapter 10: Network-based statistic (NBS) . 81

Chapter 11: Graph- and vertex-level mediation analysis 87

49

8

Vertex-wise group analysis (GLM)

8.1: Function arguments . 50

8.2: Return object . 53

8.3: Tutorial: design matrix coding . 56

8.4: Examples . 60

8.5: Permutation testing . 66

8.6: Plotting LM diagnostics . 67

8.7: Create a graph of the results . 69

8.8: Plotting a graph of the results . 69

Analysis of between-group differences in a given vertex measure (e.g., degree, betweenness centrality, etc.) is
described in this chapter (equivalent to a voxel-wise analysis common in fMRI, DTI, VBM, etc. analyses).
This is only possible if you have a graph for each subject (at a given density/threshold). In this chapter, I
describe the inputs and outputs of the function brainGraph GLM. Next, I provide a “mini-tutorial” on design
matrix coding and provide several examples of common experimental designs. Finally, I show an example
using permutations (as in FSL’s randomise).(40, 80, 129)

8.1 Function arguments

args(brainGraph_GLM)

function (g.list, covars, measure, contrasts, con.type = c("t",

"f"), outcome = NULL, X = NULL, con.name = NULL, alternative = c("two.sided",

"less", "greater"), alpha = 0.05, level = c("vertex", "graph"),

permute = FALSE, perm.method = c("freedmanLane", "terBraak",

"smith", "draperStoneman", "manly", "stillWhite"), part.method = c("beckmann",

"guttman", "ridgway"), N = 5000, perms = NULL, long = FALSE,

...)

NULL

50

8.1 Function arguments 51

! New in v3.0.0

There are a few new arguments in v3.0.0. These are described in more detail below:

outcome If the model outcome differs from the graph metric

perm.method The permutation method, which includes 3 new methods (see under “Optional”
arguments)

part.method The model partition method

Furthermore, con.mat has been renamed to contrasts because lists of matrices (for multiple F-
contrasts) are allowed in addition to single matrices.

8.1.1 Mandatory

The following list details the mandatory function arguments:

g.list A brainGraphList object. If your study has multiple groups, this object should contain
graphs for all subjects.

covars A data.table of covariates which will be used to create the design matrix. It should have
as its first column Study.ID (or whatever the value of getOption(’bg.subject id’)

is); the data in this column must match the name graph-level attribute of the graphs in
g.list (or at least a subset of them). You may include any additional columns of your
choosing (e.g., age, sex, etc.).

measure The vertex- or graph-level measure of interest (e.g., E.nodal.wt).

contrasts A list or numeric matrix specifying the contrast(s) of interest. The contrasts can have
multiple rows, and you can specify row names. If you provide a list of matrices, then the
list element names will be used.

con.type Either t or f, if you want to calculate t- or F-statistics. F-statistics are by definition
“two-sided”. Otherwise, this choice only affects whether statistics are calculated for each
row of the contrast matrix (t) or a single set for the whole matrix or each matrix in the
list (f). If you pass a list of matrices to contrasts, then this must be f.

8.1.2 Optional

The following are optional function arguments:

outcome If you would like the outcome (dependent variable) to be something other than a graph
metric, you can specify it here. In this case, the graph metric specified by measure will be
included in the design matrix as a covariate. At the vertex-level, there will be one design
matrix per region (since the graph metric differs for each vertex).

X If you wish to provide your own design matrix, you can specify it with this argument.
Note that, if you do this, you still need to provide the covars data table; this is used for
making sure the covariates and the graph metrics are in the same order, and to remove
the appropriate data if some are missing for certain subjects. However, the function
will assume that you have correctly created your own design matrix, and doesn’t do any
checking.

52 Chapter 8: Vertex-wise group analysis (GLM)

Note

If you specify a variable for outcome, then passing in a design matrix is ignored.
This argument will be deprecated in a future version.

con.name A character vector of the name(s) of the contrast(s); e.g., ’Control > Patient’ . If
this argument is not provided, the function first checks if contrasts has row names (if
it is a matrix) or list names otherwise. You can create these yourself. If names are not
supplied, they will be generic; e.g., ’Contrast 1’

alternative Either two.sided (the default), less, or greater corresponding to (respectively)

HA : γ̂ 6= 0

HA : γ̂ ≤ 0

HA : γ̂ ≥ 0

alpha The significance level. Default: 0.05

level Either vertex or graph, depending on if the measure of interest is vertex- or graph-level.

Permutation-related arguments

The following optional arguments pertain to permutation/randomization tests (see Permutation testing):

permute A logical indicating whether or not to do a permutation test. Default: FALSE

perm.method The permutation method to use. The default is to use the freedmanLane method (40).
You may also choose terBraak (2), smith (108), draperStoneman (31), manly (77), or
stillWhite (109).

part.method The method used to partition the design matrix. The default is the beckmann method (7).
You may also choose guttman (46) or ridgway (93).

N An integer indicating the number of permutations to create. Default: 5,000

perms A numeric matrix of the permutation order, if you would like to provide your own.

long A logical specifying whether or not to return the null distribution of the maximum statistics
across permutations. Default: FALSE

8.1.3 Unnamed: design matrix arguments

The ellipsis (i.e., the ...) in a function call specifies unnamed arguments that are passed to other functions.
In brainGraph GLM, they are passed to brainGraph GLM design, a function that simply creates a design
matrix X. Here I list the arguments that you may specify in your function call.

coding A character string, either dummy (default), effects, or cell.means. This determines how
your factor variables will be coded in the design matrix. See Tutorial: design matrix coding
for more.

factorize A logical specifying whether or not to convert character columns to factor. Default: TRUE

binarize A character vector of the column name(s) of covars to convert from factor to numeric
(binary) vector. If the factor has k > 2 levels, it will not be binarized but instead changed
to 0, 1, . . . , k − 1.

8.2 Return object 53

int A character vector of the column names of covars to test for an interaction. The resulting
columns will be appended to the end of the design matrix. If you provide only one column,
nothing will happen. If you provide 3, then the 3-way and all 2-way interactions will be
added to the design.

mean.center A logical specifying whether or not to mean-center numeric variables. Default: FALSE .
Mean-centering will be done for all subjects, by default, but see the next bullet point. Note
that any factor variables that were binarized will also be mean-centered.

center.how A character string specifying whether variables should be centered based on all subjects
(the default), or within-groups. The groups are specified by the center.by argument (see
next bullet point). Although this may not be the most common choice in neuroimaging, see
this article on the AFNI site for an excellent discussion.

center.by A character string specifying which variable is the grouping variable (only valid if
center.how=’within-groups’). By default, it will center according to the Group variable,

if present. If your design has factor interactions (e.g., Group X Sex), then you may want to

specify both variables here; i.e., center.by=c(’Group’, ’Sex’) .

Note

It is recommended that, if you include interaction terms, you should also mean-center the other
variables to partially reduce multicollinearity (e.g., see Chapter 8.2 of Kutner et al. (70)).

To summarize, columns in the design matrix X will be in a different order than the input covars. The
first column will be the Intercept (a column of all 1’s), if coding is not set to cell.means. The next
column(s) will by any numeric variables, followed by factor column(s), and finally interaction columns (if
applicable). You may wish to inspect the design matrix before specifying your contrast matrix by typing,

e.g., head(brainGraph GLM design(covars, ...)) .

8.2 Return object

This function returns an object of class bg_GLM with several of the input arguments in addition to a data.table

of the statistics of interest. For details on the statistics calculated, see GLM Statistics.

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/STATISTICS/center.html

54 Chapter 8: Vertex-wise group analysis (GLM)

! New in v3.0.0

There are several new elements of the return object in v3.0.0.

outcome Can now be different from (or the same as) measure

measure Formerly called outcome

DT.Xy A data.table with all design matrix and outcome variable data

contrasts Renamed from con.mat

removed.subs Renamed from removed

runX,runY Regions for which a model can be fit based on the design matrix and outcome variable,
respectively

atlas

GLM statistics These are coefficients, rank, df.residual, residuals, sigma,
fitted.values, qr, cov.unscaled, var.covar, se. See GLM Statistics for details.

perm.order The permutation matrix applied to the data

perm.method

part.method

perm The element null.dist is now a 3-D array, and null.max is a column matrix with the
maximum statistic for each permutation

level Either vertex or graph

X The design matrix

y The outcome variable. If level=’graph’ , this is a numeric vector ; If level=’vertex’ ,

this is a numeric matrix. The number of rows equals the number of subjects, and the number
of columns equals the number of vertices.

outcome The name of the outcome variable; this will either be the graph metric chosen by the measure

function argument or the variable specified by the outcome argument.

measure The graph- or vertex-level metric of interest.

covars The data table used to create the design matrix. If any subjects have incomplete data, they
will not be included in the table.

con.type Either 't' or 'f'.

contrasts A contrast matrix or list of matrices (for F-tests only).

con.name The contrast name(s).

alt The alternative hypothesis.

alpha The significance level.

DT A data.table containing statistics of interest; see the next section for details.

8.2 Return object 55

removed.subs A character vector of the subjects removed from the analyses (due to incomplete data). If
none were removed, this will be NULL .

permute A logical indicating whether or not permutations were calculated.

perm.method The permutation method used.

part.method The model partition method used.

N The number of permutations (if applicable).

perm A list containing:

thresh The (1− α)th percentile of the null distribution.

null.dist A 3-D array of the null distribution of the maximum statistic. The # of rows
equals the # of regions, # of columns equals # of permutations, and the length
of the 3rd dimension equals the # of contrasts.

null.max A matrix of the maximum statistic for each permutation (across regions). The
of rows equals the # of permutations and the # of columns equals the # of
contrasts.

atlas The name of the atlas for the input graphs.

8.2.1 Return object: DT

The data.table object that is returned contains all statistics of interest. Each row is a different vertex
(brain region) or a single row for graph-level metrics. Additionally, statistics are listed for each contrast (if
more than one is specified).

For t-contrasts, the columns are described in the following list. For F-contrasts, the only difference is that
ESS (the extra sum-of-squares) replaces gamma.

region The region name (abbreviated)

gamma The contrast(s) of parameter estimates

se The standard error of the contrast(s)

stat The t- or F-statistic(s) associated with the contrast(s)

p The p-value associated with the contrast(s)

ci.low The lower confidence limit

ci.high The upper confidence limit

p.fdr The FDR-adjusted p-value

p.perm The permutation p-value, if permute=TRUE

Outcome The name of the outcome variable (e.g., E.nodal.wt)

Contrast The name of the contrast(s)

contrast Integer indicating the contrast number

56 Chapter 8: Vertex-wise group analysis (GLM)

8.3 Tutorial: design matrix coding

8.3.1 Suggested reading

A very good website with MRI-focused information on design matrices in the GLM is FSL’s GLM site. For
more information regarding coding schemes in linear models, see (63, 84, 104, 128). For a complete treatment
of this topic, see Kutner et al. (70); they usually use dummy coding, but see Chapter 8.4 where they introduce
effects and cell means coding (see the sub-section Other codings for indicator variables). For some
information regarding how coding is handled in R, see this UCLA page. Finally, Anderson Winkler’s blog has
a great post of common GLM formulas.

8.3.2 Dummy coding

The default parameterization of factors in R is known as reference, or dummy, coding. Let’s say we have
a simple one-way ANOVA (a factor named Group) with two levels (Control and Patient). In this scheme,
instead of having a column in the design matrix X for each level, there is only a column for the second level
(Patient) in addition to the Intercept. You can use this type of coding by setting coding=’dummy’ in the

call to brainGraph GLM. There is more on dummy coding at this UCLA page.

The parameter estimate for the intercept represents the mean of the first (alphabetically, by default) group,
and the second parameter estimate is the mean of the second group relative to the first group. In equation
form (generalized to a 1× k ANOVA):

β̂0 = µ1

β̂1 = µ2 − µ1

...

β̂k−1 = µk − µ1

To compare group means, assume there are k = 3 factor levels. Group 1 (the reference group) is coded +1 for
the intercept and 0 for the other parameters; group 2 is coded +1 for the intercept and second parameter,
and 0 for the third:

HA : µ1 − µ2 > 0

⇒ (β̂0)− (β̂0 + β̂1) > 0

⇒ − β̂1 > 0

⇒ C = (0,−1, 0)

HA : µ1 − µ3 > 0

⇒ (β̂0)− (β̂0 + β̂2) > 0

⇒ −β̂2 > 0

⇒ C = (0, 0,−1)

For a general between-group comparison (that does not involve the reference group), the contrast has a +1 in
the ith entry and a -1 in the jth entry:

HA : µi − µj > 0

⇒ (β̂i−1 + β̂0)− (β̂j−1 + β̂0) > 0

⇒ β̂i−1 − β̂j−1 > 0

⇒ C = (0, 0, · · · , 1, 0, · · · ,−1, 0, 0, · · · , 0)

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Experimental_Designs_-_Between_Subject_ANOVA_Models
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
https://brainder.org/2015/03/04/all-glm-formulas/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-dummy-coding/

8.3 Tutorial: design matrix coding 57

Create a data.table with just Study.ID and Group

X <- env.glm$covars.dti[, 1:2]

setkey(X, Group, Study.ID)

print(X, 4)

Study.ID Group

1: 02-115-0 Control

2: 02-126-1 Control

3: 02-127-2 Control

4: 02-128-9 Control

153: 02-629-8 Patient

154: 02-630-6 Patient

155: 02-631-5 Patient

156: 02-632-2 Patient

The Control group is chosen to be the reference group

X[, levels(Group)]

[1] "Control" "Patient"

There are only 2 columns, with the second indicating membership in Group 2

model.matrix(~ Group, data=X)[c(1:4, 153:156),]

(Intercept) GroupPatient

1 1 0

2 1 0

3 1 0

4 1 0

153 1 1

154 1 1

155 1 1

156 1 1

Example outcome variable, nodal efficiency for one vertex

y <- sapply(g.glm[], function(x) V(x)$E.nodal.wt[1])

Xy <- cbind(X, y)

Simple linear regression

summary(lm(y ~ Group, data=Xy))$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.045358 0.0009747 46.53 1.338e-92

GroupPatient -0.003256 0.0011504 -2.83 5.274e-03

beta_0 equals the mean of Group 1, and beta_1 equals the difference in Group

means (Group 2 - Group 1)

Xy[, mean(y), by=Group]

Group V1

1: Control 0.04536

2: Patient 0.04210

Xy[, mean(y), by=Group][, diff(V1)]

[1] -0.003256

58 Chapter 8: Vertex-wise group analysis (GLM)

8.3.3 Cell means coding

The values in the second row of the summary in the previous code block would be equivalent to setting a
contrast of c(-1, 1) in a 2nd-level SPM analysis if the coding scheme were cell means coding. Here, the
parameters represent the factor level means:

β̂1 = µ1

β̂2 = µ2

...

β̂k = µk

If you prefer this kind of parameterization, you can exclude the intercept with the following code. This is the
same matrix that results from setting coding=’cell.means’ in a call to brainGraph GLM.

You can manually exclude the intercept to get group means:

model.matrix(~ Group + 0, data=X)[c(1:4, 153:156),]

GroupControl GroupPatient

1 1 0

2 1 0

3 1 0

4 1 0

153 0 1

154 0 1

155 0 1

156 0 1

summary(lm(y ~ Group + 0, data=Xy))$coefficients

Estimate Std. Error t value Pr(>|t|)

GroupControl 0.04536 0.0009747 46.53 1.338e-92

GroupPatient 0.04210 0.0006109 68.91 1.221e-117

8.3.4 Effects coding

As detailed in the FSL GLM page, effects coding is a better choice for more complicated designs. The coding
is almost the same as dummy coding except that the reference group is indicated by −1 in the design matrix
instead of 0. You can use this type of coding by setting coding=’effects’ in a call to brainGraph GLM.

There is more on effects coding on this UCLA page.

The parameter estimate for the intercept represents the mean of factor level means (µ. in the equations
below). The remaining parameter estimates represent the difference between the overall mean and the factor
level mean.

Note

This value will not equal the mean of all observations if there are an unequal number of observations
in each level.

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/effect.htm

8.3 Tutorial: design matrix coding 59

β̂0 = µ.

β̂1 = µ2 − µ.
...

β̂k−1 = µk − µ.

If you are interested in comparing group means under this coding scheme, first assume that there are k = 3
factor levels. Then, since group 1 (the reference group) is coded +1 for the intercept and -1 for the other
parameters, and group 2 is coded +1 for the intercept and the second parameter, and 0 for the third:

HA : µ1 − µ2 > 0

⇒(β̂0 − β̂1 − β̂2)− (β̂0 + β̂1) > 0

⇒− 2β̂1 − β̂2 > 0

⇒C = (0,−2,−1)

The contrast for a difference in groups i and j (where i 6= j 6= 1), i.e., H0 : µi − µj 6= 0, is the same as in the
dummy coding example.

Xdes <- brainGraph_GLM_design(X, coding='effects')

Xdes[c(1:3, 102:105),]

Intercept GroupPatient

02-115-0 1 -1

02-126-1 1 -1

02-127-2 1 -1

02-294-3 1 1

02-295-3 1 1

02-311-4 1 1

02-312-4 1 1

Contrasts

Cmat <- matrix(c(1, -1, 1, 1, 0, -2, 0, 2), nrow=4, ncol=2, byrow=TRUE)

rownames(Cmat) <- c(paste('Mean', grps),

'Control > Patient', 'Patient > Control')

Cmat

[,1] [,2]

Mean Control 1 -1

Mean Patient 1 1

Control > Patient 0 -2

Patient > Control 0 2

Fit the LM and get statistics for all contrasts

fits <- fastLmBG(Xdes, as.matrix(y))

rbindlist(apply(fastLmBG_t(fits, Cmat), 3, as.data.table), idcol='Contrast')

Contrast gamma se stat p p.fdr

1: Mean Control 0.045358 0.0009747 46.53 1.338e-92 1.338e-92

2: Mean Patient 0.042102 0.0006109 68.91 1.221e-117 1.221e-117

3: Control > Patient 0.003256 0.0011504 2.83 5.274e-03 5.274e-03

4: Patient > Control -0.003256 0.0011504 -2.83 5.274e-03 5.274e-03

60 Chapter 8: Vertex-wise group analysis (GLM)

8.4 Examples

This section contains examples of common analysis scenarios. This is the first demonstration of the summary

method for brainGraph GLM results. See Box 8.1.

In all examples, the brainGraphList object g.glm contains all the graphs for both groups at a single

threshold. The covariates table used in each example (varying the inclusion of certain columns) is:

env.glm$covars.dti

Study.ID Group Age.MRI Sex Scanner

1: 02-001-4 Patient 16.19 M 3T

2: 02-003-2 Patient 16.57 M 3T

3: 02-006-8 Patient 16.59 M 3T

4: 02-008-7 Patient 18.04 F 1.5T

5: 02-013-1 Patient 16.80 M 1.5T

152: 02-639-2 Control 11.47 F 3T

153: 02-643-9 Control 11.13 M 1.5T

154: 02-644-0 Control 13.15 M 1.5T

155: 02-646-5 Control 11.54 F 1.5T

156: 02-652-9 Control 10.71 M 1.5T

BOX 8.1 The summary method for results

In the Examples section, you see a printed summary of the results from brainGraph GLM. First, the
output in this document is not how it will appear in your terminal. I use the excellent colorout package
for “colorizing” different aspects of the text.

In my terminal, the lines you see with two leading pound signs and black text are displayed in blue;
these are printed using R’s message function. Next are the input parameters supplied to the function.
Finally, the statistics are displayed; if there are multiple contrasts, there will be a separate section for
each. You may also choose to show results for a single contrast using the contrast argument. The
summary function displays only significant results (based on the supplied α level). You may choose

to use the actual P-value or the FDR-adjusted P-value for significance (via the function argument
p.sig). The argument digits adjusts the number of significant digits displayed. Finally, the

print.head argument controls how many rows to display; by default, at most 10 rows will be

printed.

8.4.1 Two-group difference

The following code block tests for between-group difference in weighted nodal efficiency. The summary

method will be shown for a later example.

Simple between-group comparison, Group 1 > Group 2

con.mat <- matrix(c(0, -2), nrow=1, dimnames=list('Control > Patient'))

summary(with(env.glm,

brainGraph_GLM(g.glm, measure='E.nodal.wt', covars=covars.dti[, 1:2],

coding='effects', contrasts=con.mat, alt='greater')))

https://github.com/jalvesaq/colorout

8.4 Examples 61

8.4.2 Two-group difference adjusted for covariate

In the following code block, I adjust for age at MRI. I also mean-center the covariate (but it does not change
the statistics). It must be noted that the function adds the factor variables after any covariates, so you will
need to adjust your contrast vectors accordingly.

Between-group comparison adjusted for age, Group 1 > Group 2

con.mat <- matrix(c(0, 0, -2), nrow=1, dimnames=list('Control > Patient'))

summary(with(env.glm,

brainGraph_GLM(g.glm, measure='E.nodal.wt', covars=covars.dti[, 1:3],

coding='effects', mean.center=TRUE, contrasts=con.mat,

alt='greater')))

8.4.3 Two-group difference with continuous covariate interaction

This is essentially the same as the previous model, except now the covariate Age.MRI will be mean-centered
and then split into two columns in the design matrix (one for each subject group). This is achieved by

including int=c(’Group’, ’Age.MRI’) in your function call. I only show the results for the cell.means

approach.

A few rows of the design matrix

X <- brainGraph_GLM_design(env.glm$covars.dti[, 1:3], coding='cell.means',

mean.center=TRUE, int=c('Group', 'Age.MRI'))

X[c(1:4, 153:156),]

GroupControl GroupPatient GroupControl:Age.MRI

02-001-4 0 1 0.000

02-003-2 0 1 0.000

02-006-8 0 1 0.000

02-008-7 0 1 0.000

02-643-9 1 0 -3.827

02-644-0 1 0 -1.812

02-646-5 1 0 -3.419

02-652-9 1 0 -4.249

GroupPatient:Age.MRI

02-001-4 1.236

02-003-2 1.613

02-006-8 1.635

02-008-7 3.078

02-643-9 0.000

02-644-0 0.000

02-646-5 0.000

02-652-9 0.000

Between-group comparison with Age interaction, Group 1 > Group 2

con.mat <- matrix(c(0, 0, 1, -1), nrow=1, dimnames=list('Group X Age'))

summary(with(env.glm,

brainGraph_GLM(g.glm, measure='E.nodal.wt', covars=covars.dti[, 1:3],

X=X, contrasts=con.mat, alt='greater')))

62 Chapter 8: Vertex-wise group analysis (GLM)

8.4.4 Two-way between subjects ANOVA: 2x2

Here is an example of a 2x2 ANOVA. The two factors are Group and Sex, and the levels for each are
Control, Patient and Male, Female. The first example shows effects coding, and the second is cell-
means coding. Note in the second code block that with cell-means coding, the order of the columns is
A1B1, A2B1, A1B2, A2B2. I divide the contrast vector by 4 to match the results of effects coding.1

A few rows of the design matrix

X <- brainGraph_GLM_design(env.glm$covars.dti[, c(1:2, 4)], coding='effects',

int=c('Group', 'Sex'))

X[c(1:4, 153:156),]

Intercept GroupPatient SexM GroupPatient:SexM

02-001-4 1 1 1 1

02-003-2 1 1 1 1

02-006-8 1 1 1 1

02-008-7 1 1 -1 -1

02-643-9 1 -1 1 -1

02-644-0 1 -1 1 -1

02-646-5 1 -1 -1 1

02-652-9 1 -1 1 -1

con.mat <- matrix(c(0, 0, 0, 1), nrow=1, dimnames=list('Group x Sex interaction'))

summary(with(env.glm,

brainGraph_GLM(g.glm, measure='E.nodal.wt', covars=covars.dti[, c(1:2, 4)],

X=X, contrasts=con.mat, alt='greater')))

##

=====================================

brainGraph GLM results (vertex-level)

=====================================

GLM formula:

E.nodal.wt ~ Group * Sex

based on 156 observations, with 152 degrees of freedom.

##

Contrast type: T contrast

Alternative hypothesis: C > 0

Contrasts:

Intercept GroupPatient SexM GroupPatient:SexM

Group x Sex interaction . . . 1

##

Statistics

Group x Sex interaction:

Region Estimate 95% CI low 95% CI high Std. error t value Pr(>|t|)

1: lENT 0.001186 1.12e-04 0.00226 0.000543 2.18 0.01533

2: lFUS 0.000767 -9.32e-05 0.00163 0.000435 1.76 0.04007

3: lpORB 0.000865 -8.88e-05 0.00182 0.000483 1.79 0.03758

4: lTT 0.000963 2.67e-04 0.00166 0.000353 2.73 0.00351

5: lTHAL 0.001186 1.85e-04 0.00219 0.000506 2.34 0.01024

9: rENT 0.000962 -6.32e-05 0.00199 0.000519 1.85 0.03284

1The t-statistics and p-values would be unchanged if you did not divide by 4.

8.4 Examples 63

10: rPARH 0.001011 1.70e-05 0.00201 0.000503 2.01 0.02313

11: rTHAL 0.000887 -1.52e-04 0.00193 0.000526 1.69 0.04682

12: rHIPP 0.001186 -2.63e-05 0.00240 0.000614 1.93 0.02756

13: rAMYG 0.001195 2.72e-04 0.00212 0.000467 2.56 0.00577

Pr(>|t|) (FDR)

1: 0.254

2: 0.254

3: 0.254

4: 0.219

5: 0.254

9: 0.254

10: 0.254

11: 0.259

12: 0.254

13: 0.219

For cell-means coding, I show part of the design matrix, but omit the summary , as it is identical to that

for effects coding. Note that the contrast matrix is divided by 4 to give equivalent results.

X <- brainGraph_GLM_design(env.glm$covars.dti[, c(1:2, 4)],

coding='cell.means', int=c('Group', 'Sex'))

X[1:4,]

GroupControl:SexF GroupControl:SexM GroupPatient:SexF

02-001-4 0 0 0

02-003-2 0 0 0

02-006-8 0 0 0

02-008-7 0 0 1

GroupPatient:SexM

02-001-4 1

02-003-2 1

02-006-8 1

02-008-7 0

con.mat <- matrix(c(1, -1, -1, 1) / 4, nrow=1, dimnames=list('Group X Sex'))

8.4.5 Two-way between subjects ANOVA: 2x3

Here is an example of a 2x3 ANOVA. The first example shows effects coding, and the second shows cell-means
coding. I show all of the standard ANOVA contrasts.

A few rows of the design matrix; get rid of 'NA' values first

incomp <- covars2x3[!complete.cases(covars2x3), Study.ID]

X <- brainGraph_GLM_design(covars2x3[!Study.ID %in% incomp],

coding='effects', int=c('A', 'B'))

head(X)

Intercept A2 B2 B3 A2:B2 A2:B3

02-001-4 1 -1 -1 -1 1 1

02-003-2 1 1 0 1 0 1

02-008-7 1 -1 -1 -1 1 1

02-013-1 1 1 -1 -1 -1 -1

64 Chapter 8: Vertex-wise group analysis (GLM)

02-014-6 1 1 0 1 0 1

02-016-1 1 -1 -1 -1 1 1

con.mat <- cbind(0, diag(5))

rownames(con.mat) <- c('Main A', 'Main B (1st)', 'Main B (2nd)',

'A X B (1st)', 'A X B (2nd)')

anova2x3 <- brainGraph_GLM(g.glm[45:156], measure='E.nodal.wt', covars=covars2x3,

X=X, contrasts=con.mat, alt='greater')

summary(anova2x3)

##

=====================================

brainGraph GLM results (vertex-level)

=====================================

GLM formula:

E.nodal.wt ~ A * B

based on 105 observations, with 99 degrees of freedom.

##

Contrast type: T contrast

Alternative hypothesis: C > 0

Contrasts:

Intercept A2 B2 B3 A2:B2 A2:B3

Main A . 1

Main B (1st) . . 1 . . .

Main B (2nd) . . . 1 . .

A X B (1st) 1 .

A X B (2nd) 1

7 subjects removed due to incomplete data:

02-006-8, 02-123-7, 02-161-8, 02-170-3, 02-203-8, 02-287-7, 02-521-5

##

Statistics

Main A:

No signficant results!

Main B (1st):

No signficant results!

Main B (2nd):

Region Estimate 95% CI low 95% CI high Std. error t value Pr(>|t|)

1: lFUS 0.00123 -1.70e-04 0.00262 0.000703 1.74 0.0423

2: lPARH 0.00173 -3.60e-05 0.00350 0.000892 1.94 0.0274

3: lpORB 0.00139 -1.62e-04 0.00294 0.000781 1.78 0.0394

4: lrMFG 0.00140 -1.80e-04 0.00297 0.000794 1.76 0.0410

5: lPUT 0.00216 2.06e-05 0.00430 0.001079 2.00 0.0239

6: lPALL 0.00181 -5.69e-05 0.00367 0.000940 1.92 0.0286

7: lHIPP 0.00193 -1.34e-04 0.00399 0.001040 1.86 0.0332

8: rparaC 0.00178 8.46e-05 0.00347 0.000854 2.08 0.0199

9: rPALL 0.00171 -1.97e-04 0.00362 0.000963 1.78 0.0391

Pr(>|t|) (FDR)

1: 0.357

2: 0.357

3: 0.357

8.4 Examples 65

4: 0.357

5: 0.357

6: 0.357

7: 0.357

8: 0.357

9: 0.357

A X B (1st):

No signficant results!

A X B (2nd):

Region Estimate 95% CI low 95% CI high Std. error t value Pr(>|t|)

1: lcMFG 0.00167 2.92e-04 0.00306 0.000697 2.40 0.00907

2: lCUN 0.00211 4.48e-04 0.00377 0.000837 2.52 0.00667

3: lENT 0.00188 8.90e-06 0.00376 0.000945 1.99 0.02447

4: liCC 0.00228 3.82e-04 0.00419 0.000959 2.38 0.00956

5: lLOF 0.00263 5.09e-04 0.00475 0.001068 2.46 0.00780

22: rpORB 0.00111 -1.84e-04 0.00240 0.000650 1.70 0.04601

23: rpTRI 0.00151 1.37e-04 0.00289 0.000695 2.18 0.01578

24: rPCC 0.00156 -1.24e-04 0.00324 0.000847 1.84 0.03456

25: rrACC 0.00165 -9.17e-05 0.00339 0.000878 1.88 0.03154

26: rSFG 0.00131 -1.53e-04 0.00278 0.000739 1.78 0.03930

Pr(>|t|) (FDR)

1: 0.0733

2: 0.0733

3: 0.1123

4: 0.0733

5: 0.0733

22: 0.1399

23: 0.0857

24: 0.1194

25: 0.1194

26: 0.1245

For cell-means coding, I only show part of the design matrix. Note the order of the columns: all of the A1

factors come first, and then the A2’s. I also show how to construct the contrast matrix. Notice that I divide
the matrix by 6; this will give equivalent results to the effects coding run.

X <- brainGraph_GLM_design(covars2x3[!Study.ID %in% incomp],

coding='cell.means', int=c('A', 'B'))

head(X)

A1:B1 A1:B2 A1:B3 A2:B1 A2:B2 A2:B3

02-001-4 1 0 0 0 0 0

02-003-2 0 0 0 0 0 1

02-008-7 1 0 0 0 0 0

02-013-1 0 0 0 1 0 0

02-014-6 0 0 0 0 0 1

02-016-1 1 0 0 0 0 0

con.mat <- matrix(c(1, 1, 1, -1, -1, -1,

-1, 1, 0, -1, 1, 0,

-1, 0, 1, -1, 0, 1,

66 Chapter 8: Vertex-wise group analysis (GLM)

1, 0, -1, -1, 0, 1,

0, 1, -1, 0, -1, 1), nrow=5, byrow=TRUE)

con.mat <- con.mat / 6

rownames(con.mat) <- c('Main A', 'B2-B1', 'B3-B1',

'A1B1 - A2B1 - A1B3 + A2B3', 'A1B2 - A2B2 - A1B3 + A2B3')

summary(brainGraph_GLM(g.glm[45:156], measure='E.nodal.wt', covars=covars2x3,

X=X, contrasts=con.mat, alt='greater'))

8.4.6 Three-way between subjects ANOVA: 2x2x2

If the int vector has three elements, all two-way interactions will be automatically included. In this example,
the three factors and their levels are:

• Group (Patient and Control)

• Sex (M and F)

• Scanner (1.5T and 3T)

X <- brainGraph_GLM_design(env.glm$covars.dti[, !'Age.MRI'],

coding='effects',

int=c('Group', 'Sex', 'Scanner'))

head(X)

Intercept GroupPatient SexM Scanner3T GroupPatient:SexM

02-001-4 1 1 1 1 1

02-003-2 1 1 1 1 1

02-006-8 1 1 1 1 1

02-008-7 1 1 -1 -1 -1

02-013-1 1 1 1 -1 1

02-014-6 1 1 1 -1 1

GroupPatient:Scanner3T SexM:Scanner3T GroupPatient:SexM:Scanner3T

02-001-4 1 1 1

02-003-2 1 1 1

02-006-8 1 1 1

02-008-7 -1 1 1

02-013-1 -1 -1 -1

02-014-6 -1 -1 -1

8.5 Permutation testing

If you also would like to get permutation-based p-values, then you can specify permute=TRUE to perform the

permutations, calculate the maximum test statistic across vertices (or a single statistic if level=’graph’

), and compare this null distribution of maximum statistics to the observed statistics. This is essentially
the same as the procedure from FSL’s randomise and the PALM utility (albeit without as much of the
functionality).(40, 80, 129) The default matrix partitioning scheme is (like that of PALM) called ’beckmann’

.(108)

8.6 Plotting LM diagnostics 67

! New in v3.0.0

You can choose from 3 permutation methods: Freedman-Lane (the default), Smith, and Ter Braak.
See Winkler et al. (129) for details/discussion of these methods. You may also now explicitly choose
the matrix partitioning scheme; either Beckmann (the default), Guttman, or Ridgway.

When long=TRUE , an additional element called perm is returned in the bg GLM object. See the section

Return object for details.

8.5.1 Example

X <- brainGraph_GLM_design(env.glm$covars.dti, coding='effects',

binarize=c('Sex', 'Scanner'))

con.mat <- matrix(c(rep(0, 4), -2), nrow=1, dimnames=list('Control > Patient'))

diffs.perm <- brainGraph_GLM(g.glm, env.glm$covars.dti, 'E.nodal.wt',

contrasts=con.mat, X=X, alt='greater',

permute=TRUE, N=5000, long=TRUE)

Here, I show the structure of the perm element.

str(diffs.perm$perm)

List of 3

$ thresh : Named num 3.01

..- attr(*, "names")= chr "Control > Patient"

$ null.dist: num [1:76, 1:5000, 1] -0.341 -0.67 -1.23 -2.408 -2.142 ...

$ null.max : num [1:5000, 1] 0.416 1.233 0.715 1.986 1.253 ...

8.6 Plotting LM diagnostics

The plot method for bg GLM objects has the same functionality as plot.lm in base R: it shows linear

model “diagnostics”. There are 6 possible plots (for a given region), chosen by the argument which :

1. Residuals vs. fitted values

2. QQ plot

3. “Scale-location” plot (standardized residuals vs. fitted values)

4. Cook’s distance

5. Residuals vs. leverage

6. Cook’s distance vs. leverage

The plots shown in Figure 8.1 were generated by the function call in the following code block. The plot title
lists the outcome variable (the graph metric of interest) and the region; there is a plot sub-title (at bottom)
which shows the linear model formula used in R (in what is sometimes called “Wilkinson notation”).

68 Chapter 8: Vertex-wise group analysis (GLM)

grid.arrange(plot(diffs.perm, region='lHIPP', which=1:6)[[1]])

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

02−025−6

02−142−4

02−236−1

02−262−8

02−447−7 02−591−3

−
0.

01
0.

00
0.

01
0.

02

0.055 0.060 0.065 0.070
fit

re
si

d

Residuals vs Fitted

02−025−6

02−142−4

02−236−1

02−262−8

02−447−7

02−591−3

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Normal Q−Q

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

02−025−6 02−142−4
02−236−1

02−262−8
02−447−7

02−591−3

0.
0

0.
5

1.
0

1.
5

0.055 0.060 0.065 0.070
Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location

02−025−6

02−142−4
02−236−1

02−262−8

02−447−7

02−591−3

0.
00

0.
02

0.
04

0 50 100 150
Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

02−025−6

02−142−4

02−236−1

02−262−8

02−447−7

02−591−3−
2

0
2

0.00 0.02 0.04 0.06
Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Residuals vs Leverage

●●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●●

●

●

●

●●
●

●

●
●

●

●

●●●

●

●

●

●

● ● ●
●

●

●
●

●

●

●

●

●●

● ●
●

●

●

●

●

●

02−025−6

02−142−4

02−236−1

02−262−8

02−447−7

02−591−3
0.

00
0.

02
0.

04

0.00 0.02 0.04 0.06
Leverage hii

C
oo

k'
s

di
st

an
ce

Cook's dist vs Leverage hii (1 − hii)

Outcome: E.nodal.wt Region: lHIPP

E.nodal.wt ~ Age.MRI + Sex + Scanner + Group

Figure 8.1: GLM diagnostics.

If you would like plots for multiple regions, you can supply a character vector, or leave the default (
region=NULL). The following code block shows how to get the plots for all regions and save each to a page

in a PDF. On my system, with 76 regions, it takes 44 seconds for the function call itself, and 38 seconds to
save the file to disk. The glmPlots object is 60 MB (in memory), and the PDF is 1.1 MB.

glmPlots <- plot(diffs.perm, which=1:6)

ml <- marrangeGrob(glmPlots, nrow=1, ncol=1)

ggsave('glmPlots.pdf', ml, width=8.5, height=11)

8.7 Create a graph of the results 69

Level Name Description

Graph
name The contrast name
outcome The network metric tested
alpha The significance level

Vertex

p 1 minus the P-value
p.fdr 1 minus the FDR-adjusted P-value
gamma The contrast of parameter estimates
se The standard error of the contrast
size2 The test statistic
size The test statistic transformed to a range of 0–20 (for visualization purposes)
p.perm 1 minus the permutation P-value

Table 8.1: GLM graph attributes. The graph- and vertex-level attributes that are added after calling
make brainGraphList.

8.7 Create a graph of the results

To create a graph with attributes specific to GLM, use make brainGraphList. The number of graphs equals
the number of contrasts, and they will have several additional attributes; see Table 8.1.

(g.anova2x3 <- make_brainGraphList(anova2x3, atlas='dkt.scgm'))

##

==

A "brainGraphList" object of *observed* graphs containing 5 contrasts.

==

##

Software versions

R release: R version 3.6.0 (2019-04-26)

brainGraph: 3.0.0

igraph: 1.2.4.1

Date created: 2020-12-31 06:49:39

Brain atlas used: Desikan-Killiany-Tourville + SCGM

Imaging modality: N/A

Edge weighting: Unweighted

Threshold: N/A

Contrast names:

[1] "Main A" "Main B (1st)" "Main B (2nd)" "A X B (1st)"

[5] "A X B (2nd)"

8.8 Plotting a graph of the results

If you would like to plot only significant regions, you can simply call the plot method on the graph. The
p.sig function argument lets you choose which P-value determines significance (the standard P-value,

FDR-adjusted, or permutation-based). Below I use the standard P-value, which is the default behavior.

70 Chapter 8: Vertex-wise group analysis (GLM)

Plot results for the fifth contrast

plot(g.anova2x3[5], vertex.color='color.lobe', vertex.size=10)

Figure 8.2: GLM results.

9

Multi-threshold permutation correction

9.1: Background . 71
9.2: Function arguments . 72
9.3: Return value . 73
9.4: Code example . 74
9.5: Plotting the statistics . 77
9.6: Create a graph of the results . 78
9.7: Plotting a graph of the results . 79

The multi-threshold permutation correction (MTPC) method for statistical inference was introduced by
Drakesmith et al.(30) Its goal is to reduce the effects of false positives and the use of multiple thresholds in
network analyses. This is because network metrics are not stable across thresholds (sometimes even adjacent
thresholds), and there is no real standard for choosing a threshold to examine a priori. The brainGraph

function for performing MTPC is mtpc.

9.1 Background

As I have described in previous chapters, it is common to generate sets of thresholded networks for a given
subject or group; this is necessary because most “raw” brain networks have an unrealistically-high density (i.e.,
the proportion of present to possible connections). In structural covariance and resting-state fMRI networks,
it is common to threshold the covariance matrix with a range of correlation values; in DTI tractography, the
threshold can be a range of streamline counts, connectivity probabilities, or average DTI metric for each tract
(e.g., FA). However, there is no principled way to choose the “correct” threshold to use for your final results.

9.1.1 MTPC procedure

The steps that are applied in MTPC are:

1. Apply a set of thresholds τ to the networks, and compute network metrics and for all subjects/groups
and thresholds (we have already done this in Graph creation and Graph creation).

2. Compute test statistics Sobs for all networks and thresholds. This is done from within mtpc by calling
brainGraph GLM (see Vertex-wise group analysis (GLM)).

3. Permute group assignments and compute test statistics for each permutation and threshold (also done
by calling brainGraph GLM).

4. Build the null distribution of the maximum statistic across thresholds (and across brain regions, if
applicable) for each permutation.

71

72 Chapter 9: Multi-threshold permutation correction

5. Determine the critical value Scrit from the null distribution of maximum test statistics (by taking the
top αth percentile).

6. Identify cluster(s) where Sobs > Scrit and compute the area under the curve (AUC) for the cluster(s);
the AUC(s) are denoted AMTPC . Note that these clusters are across thresholds; in brainGraph, I
consider 3 consecutive significant test statistics as a cluster.

7. Compute a critical AUC Acrit from the mean of the supra-critical AUC’s for the permuted tests.

8. Reject the null hypothesis H0 if the AUC of the significant (observed) clusters is greater than the
critical AUC; i.e., if AMTPC > Acrit.

Note that the procedure is nearly identical for graph- and vertex-level metrics; with vertex-level metrics, step
4 (building the null distribution of maximum test statistics) is the only difference in that the maximum is
taken across thresholds and brain regions.

9.2 Function arguments

Many arguments are the same as those of brainGraph GLM; any listed below without accompanying information
are described in Vertex-wise group analysis (GLM).

args(mtpc)

function (g.list, thresholds, covars, measure, contrasts, con.type = c("t",

"f"), outcome = NULL, con.name = NULL, level = c("vertex",

"graph"), clust.size = 3L, perm.method = c("freedmanLane",

"terBraak", "smith", "draperStoneman", "manly", "stillWhite"),

part.method = c("beckmann", "guttman", "ridgway"), N = 500L,

perms = NULL, alpha = 0.05, res.glm = NULL, long = TRUE,

...)

NULL

9.2.1 Mandatory

g.list A list of brainGraphList objects.

thresholds A numeric vector of the thresholds that were used to create the networks. This can be either
the actual threshold values or just an integer vector from 1 to the number of thresholds.

covars

measure

contrasts

9.2.2 Optional

con.type

outcome

con.name

level

9.3 Return value 73

clust.size The “cluster size” (i.e., the number of consecutive thresholds for which the observed statistic
exceeds the null). Default: 3

perm.method

part.method

N Default: 500

perms

alpha

res.glm A list of bg GLM objects, as output by a previous run of mtpc. This is useful if you want

to assess differences when varying clust.size , as it will avoid calculating all of the null

statistics over again. Default: NULL

long

9.2.3 Unnamed

The unnamed arguments are the same as those in brainGraph GLM; please see the relevant section in
Vertex-wise group analysis (GLM) for information.

9.3 Return value

The function returns an object of class mtpc. Many of the returned elements are the same as those returned
by brainGraph GLM; if they have no accompanying information here, see Vertex-wise group analysis (GLM).
The elements are: (τ refers to thresholds, and Nτ is the number of thresholds)

level

X Only present if outcome=NULL

outcome

measure

con.type

contrasts

con.name

alt

alpha

removed.subs

atlas

rank

df.residual

qr Only present if outcome=NULL

cov.unscaled Only present if outcome=NULL

74 Chapter 9: Multi-threshold permutation correction

N

res.glm A list (with length equal to Nτ) in which each element is the output from brainGraph GLM

for a single threshold.

clust.size

DT A data.table, which is combined, for all thresholds, from each run of brainGraph GLM.

stats A data.table with the statistics calculated by MTPC: τmtpc, Smtpc, Scrit, and Acrit.

null.dist A numeric array of the maximum statistic for each permutation and threshold. It will have
Nτ ×Nrand ×NC dimensions, where Nrand is the number of permutations and NC is the
number of contrasts.

perm.order

9.4 Code example

The following code blocks show how to run mtpc for a few different network measures, storing all results in a
single list. As with some other functions with long runtimes and/or high processing demands, it would be
quite a bit faster to run each individually from a fresh R session, but you can let this run without having
to repeatedly execute the code while only changing the measure argument. There are some benchmarks in
Benchmarks.

I have been storing all parameters in a single data.table, which makes it easier to loop through without
much effort. In the example below, I look at 4 network metrics: 2 graph-level and 2 vertex-level. I show how
to change the alternative hypothesis for given metrics. This approach is, of course, optional.

mtpcVars <- data.table(level=rep(c('graph', 'vertex'), each=2),

outcome=c('E.global.wt', 'Lp', 'E.nodal.wt', 'strength'),

alt='greater')

Change H_A for 'Lp'

mtpcVars[outcome == 'Lp', alt := 'less']

setkey(mtpcVars, level, outcome)

Different number of permutations based on the level

mtpcVars['graph', N := 1e4]

mtpcVars['vertex', N := 5e3]

Generate permutation matrices using 'shuffleSet' from the 'permute' package

mtpcPerms <- list(vertex=shuffleSet(n=nrow(covars), nset=mtpcVars['vertex', unique(N)]),

graph=shuffleSet(n=nrow(covars), nset=mtpcVars['graph', unique(N)]))

Create the contrast matrix

mtpcContrast <- matrix(c(0, 0, 0, 0, -2, 0,

0, 0, 0, 0, 0, 1),

nrow=2, byrow=TRUE,

dimnames=list(c('Control vs. Patient', 'Age-squared effect')))

mtpcVars

level outcome alt N

1: graph E.global.wt greater 10000

9.4 Code example 75

2: graph Lp less 10000

3: vertex E.nodal.wt greater 5000

4: vertex strength greater 5000

Loop through the network metrics

The 1st-level of the list is for each 'level' (i.e., 'graph' and 'vertex')

mtpc.diffs.list <- sapply(mtpcVars[, unique(level)], function(x) NULL)

for (x in names(mtpc.diffs.list)) { # Loop across 'level'

The 2nd-level is for each network metric (for the given level 'x')

mtpc.diffs.list[[x]] <- sapply(mtpcVars[x, unique(outcome)], function(x) NULL)

for (y in mtpcVars[x, outcome]) {
Print some timing info in the terminal; optional

print(paste('Level:', x, '; Outcome:', y, ';', format(Sys.time(), '%H:%M:%S')))

mtpc.diffs.list[[x]][[y]] <-

mtpc(g, thresholds, covars=covars.dti, measure=y, contrasts=mtpcContrast,

con.type='t', level=x, N=mtpcVars[.(x, y), N], perms=mtpcPerms[[x]],

alt=mtpcVars[.(x, y), alt])

}
}

Create a single data.table with just the significant regions

mtpc.diffs.sig.dt <-

rbindlist(lapply(mtpc.diffs.list, function(x)

rbindlist(lapply(x, function(y)

y$DT[A.mtpc > A.crit, .SD[1], by=region]))))

Save the variables created in this script

save(list=ls()[grep('.*mtpc.*', ls())],

file=paste0(savedir, , grps[2], '_', atlas, '_mtpc.rda'))

Here I show what the summary method produces. This analysis consisted of 3 groups and 3 t-contrasts.

You have the option to choose a single contrast (the default is to print results for all contrasts) and to
print longer summary tables (the default is to print only the first and last 5 rows).

summary(res.mtpc)

##

=====================================

MTPC results (vertex-level)

=====================================

GLM formula:

E.nodal.wt ~

based on 103 observations, with 97 degrees of freedom.

##

Contrast type: T contrast

Alternative hypothesis: C != 0

Contrasts:

Intercept age_mri_6w gender ScannerChange GroupPt1 GroupPt2

Control > Pt1 -2 -1

Control > Pt2 -1 -2

76 Chapter 9: Multi-threshold permutation correction

Pt1 > Pt2 1 -1

##

of thresholds: 30

Cluster size (across thresholds): 3

##

Permutation analysis

Permutation method: Freedman-Lane

Partition method: Beckmann

of permutations: 5,000

##

Statistics

tau.mtpc: threshold of the maximum observed statistic

S.mtpc: maximum observed statistic

S.crit: the critical (95th percentile) value of the null max. statistic

A.crit: critical AUC from the supra-critical null AUCs

##

contrast tau.mtpc S.mtpc S.crit A.crit Contrast

1: 1 5555 99.86 3.255 13757 Control > Pt1

2: 2 5555 119.20 3.186 14520 Control > Pt2

3: 3 4920 84.92 3.260 13473 Pt1 > Pt2

Control > Pt1:

Region tau.mtpc S.mtpc S.crit A.mtpc A.crit

1: rLOG 10000 82.65 3.26 151159 13757

2: rLOF 8730 28.17 3.26 39195 13757

3: lLOF 10000 27.72 3.26 19392 13757

4: rFUS 8730 24.85 3.26 32871 13757

5: lCAUD 7460 21.33 3.26 40502 13757

14: riCC 2622 11.01 3.26 44319 13757

15: lpORB 2156 8.10 3.26 19918 13757

16: lparaC 7460 7.56 3.26 14977 13757

17: rSPL 2778 6.74 3.26 16969 13757

18: lperiCAL 10000 -9.72 3.26 21808 13757

Control > Pt2:

Region tau.mtpc S.mtpc S.crit A.mtpc A.crit

1: rHIPP 5555 119.20 3.19 18235 14520

2: rLOG 10000 98.28 3.19 130618 14520

3: lLOG 10000 72.54 3.19 54591 14520

4: lLOF 10000 43.21 3.19 77614 14520

5: lHIPP 2778 24.36 3.19 15823 14520

44: lPCUN 2000 8.12 3.19 27565 14520

45: rPCUN 2467 7.86 3.19 15457 14520

46: lparaC 7460 7.80 3.19 33308 14520

47: lrMFG 1533 6.78 3.19 18280 14520

48: rSFG 8095 6.56 3.19 20308 14520

9.5 Plotting the statistics 77

EI > TBI:

Region tau.mtpc S.mtpc S.crit A.mtpc A.crit

1: lAMYG 5555 22.67 3.26 36411 13473

2: rBSTS 6190 20.34 3.26 35767 13473

3: lLOF 9365 16.81 3.26 27834 13473

4: lENT 1222 16.31 3.26 18254 13473

5: rFP 8730 13.24 3.26 20976 13473

12: lCUN 8095 8.54 3.26 15358 13473

13: rrACC 600 8.14 3.26 22893 13473

14: lcACC 8095 7.03 3.26 17747 13473

15: lrMFG 1533 6.63 3.26 14686 13473

16: rMTG 8730 -8.74 3.26 13481 13473

9.5 Plotting the statistics

If you would like to see how the (t- or F-) statistic changes with the threshold, in addition to the critical null
statistic value, and the null distribution of maximum statistics, you can simply call the plot method for

your results. This figure is essentially the same as Figure 11 in Drakesmith et al. (30).

argsAnywhere(plot.mtpc)

function (x, contrast = 1L, region = NULL, only.sig.regions = TRUE,

show.null = TRUE, caption.stats = FALSE, ...)

NULL

The function arguments are:

contrast You can only plot statistics for one contrast.

region You can choose one or multiple regions; if you choose multiple, the function returns a
list of ggplot2 objects.

only.sig.regions The default is TRUE . If you do not supply a region , then all significant regions

will be returned.

show.null Logical indicating whether or not to show points for the maximum null statistics. Default:
TRUE

caption.stats Logical indicating whether or not to print the statistics values underneath the plot
(default: FALSE). These are the values in the stats data.table from the results.

In Figure 9.1 I show the statistics plots for 4 regions. I use the grid.arrange function (from the gridExtra

package) to plot all 4. As you can see, regions determined to be significant can have very different statistics
profiles, so you should always check these.

mtpcPlots <- plot(res.mtpc, region=c('rCAUD', 'rLOF', 'lSMAR', 'lFUS'),

contrast=1, caption.stats=TRUE)

grid.arrange(grobs=mtpcPlots, nrow=2, ncol=2)

To save a plot for every region, use (a variant of) the following code. You can also save the PDF with multiple
plots per page by changing the nrow and ncol values.

78 Chapter 9: Multi-threshold permutation correction

●

●

●

●

●

●●

●●

0

4

8

12

25005000750010000
Threshold

T
−

st
at

is
tic

Outcome: E.nodal.wt

Region: rCAUD

Scrit = 3.255 ; 	 Acrit = 13757

Smtpc = 11.6 ; 	 Amtpc = 19923
 	(p < 0.05)

● ●

●

●

0

10

20

25005000750010000
Threshold

T
−

st
at

is
tic

Outcome: E.nodal.wt

Region: rLOF

Scrit = 3.255 ; 	 Acrit = 13757

Smtpc = 28.17 ; 	 Amtpc = 39195
 	(p < 0.05)

●

●

●

●

−5

0

5

10

15

25005000750010000
Threshold

T
−

st
at

is
tic

Outcome: E.nodal.wt

Region: lSMAR

Scrit = 3.255 ; 	 Acrit = 13757

Smtpc = 15.44 ; 	 Amtpc = 22914
 	(p < 0.05)

●

●

●

●

●

●●

●

●

●
●

0

4

8

12

25005000750010000
Threshold

T
−

st
at

is
tic

Outcome: E.nodal.wt

Region: lFUS

Scrit = 3.255 ; 	 Acrit = 13757

Smtpc = 11.91 ; 	 Amtpc = 21730
 	(p < 0.05)

Figure 9.1: MTPC statistics. The red shaded areas are those that are above the critical null statistic
(dashed line) for at least 3 consecutive thresholds. The green points are the maximum null
statistics (per permutation).

mtpcPlots <- plot(res.mtpc, contrast=1, only.sig.regions=FALSE)

ml <- marrangeGrob(mtpcPlots, nrow=1, ncol=1)

ggsave('mtpcPlots.pdf', ml, width=8.5, height=11)

9.6 Create a graph of the results

To create a graph with attributes specific to MTPC, use make brainGraphList. This will return a list (with
length equal to the number of contrasts) of graphs with several additional attributes; see Table 9.1 for the
list and a brief description of them.

g.mtpc <- make_brainGraphList(res.mtpc, atlas='dk.scgm')

9.7 Plotting a graph of the results 79

Level Name Description

Graph

name The contrast name
outcome The network metric tested
tau.mtpc Threshold of the maximum observed statistic
S.mtpc Maximum observed statistic
S.crit Critical (null) statistic
A.crit AUC of the null distribution

Vertex
A.mtpc The vertex-wise AUC where Sobs > Scrit
sig Binary int. indicating whether the vertex was found to be significantly different

Table 9.1: MTPC graph attributes. The graph- and vertex-level attributes that are added after calling
make brainGraphList.

9.7 Plotting a graph of the results

If you would like to plot only significant regions, you can simply call the plot method on the graph. Here I
plot the first contrast.

Plot results for the first contrast only

plot(g.mtpc[1], vertex.color='color.lobe', vertex.size=10)

80 Chapter 9: Multi-threshold permutation correction

Figure 9.2: MTPC results.

10

Network-based statistic (NBS)

10.1: Background . 81

10.2: Function arguments . 81

10.3: Return value . 82

10.4: Code example . 83

10.5: Creating a graph of the results . 84

10.6: Plotting the results . 85

10.7: Testing . 85

The network-based statistic (NBS) was introduced by Zalesky et al. for performing FWE control of brain
network data in a way that is analogous to cluster-based thresholding in fMRI.(133) The brainGraph function
for performing NBS is NBS.

10.1 Background

Most brain networks are relatively large, in terms of the number of possible pairwise connections: even for a
brain atlas with 90 regions (the AAL atlas), there are 90 × (90 − 1)/2 = 4005 possible connections. This
is a multiple comparisons problem, but a Bonferroni correction is inappropriate because the data are not
independent; a FDR adjustment is a better alternative. However, this still treats each data point as isolated;
i.e., it does not consider the data as a network. The network-based statistic (NBS) was thus developed to
provide weak FWE control for “mass univariate” testing of all edges in a network.

This algorithm operates directly on the connectivity matrices. A GLM is specified at every matrix element;
the model can be as simple as a two-group difference, or as complex as a three-way ANOVA. All designs that
are allowed by brainGraph GLM will also work for this function (see Examples). An initial p-value threshold is
provided by the user, and the connected component size(s) of this graph is (are) calculated. The data are then
permuted, and for each permutation the largest connected component is recorded, creating a null distribution.
A p-value is assigned to the observed connected component size(s) based on the location relative to the null
distribution. As in brainGraph GLM, randomization is done through the Freedman-Lane procedure.(40)

10.2 Function arguments

As with mtpc, many of the arguments are the same as those in brainGraph GLM; see Vertex-wise group
analysis (GLM) for more information.

81

82 Chapter 10: Network-based statistic (NBS)

args(NBS)

function (A, covars, contrasts, con.type = c("t", "f"), X = NULL,

con.name = NULL, p.init = 0.001, perm.method = c("freedmanLane",

"terBraak", "smith", "draperStoneman", "manly", "stillWhite"),

part.method = c("beckmann", "guttman", "ridgway"), N = 1000,

perms = NULL, symm.by = c("max", "min", "avg"), alternative = c("two.sided",

"less", "greater"), long = FALSE, ...)

NULL

A The 3D array of connectivity matrices.

covars

contrasts

con.type

X

con.name

p.init An initial p-value threshold for calculating the observed component sizes. Default: 0.001

perm.method

part.method

N Default: 1000

perms

symm.by Character string indicating how to symmetrize the matrices (see Import, normalize, and
filter matrices for all subjects). Default behavior is to use the maximum of the off-diagonal
elements.

alternative

long

... Arguments that are used for creating the design matrix; see Vertex-wise group analysis (GLM)
for more information

10.3 Return value

The function returns an object of class NBS . Any values not described here can be found in Vertex-wise
group analysis (GLM).

covars

X

p.init The initial p-value.

con.type

contrasts

10.4 Code example 83

con.name

alt

p.init

removed.subs

T.mat A 3-D numeric array containing the t- or F-statistics. The extent of the array will equal the
number of contrasts.

p.mat A 3-D numeric array containing the p-values. The extent of the array will equal the number
of contrasts.

N

rank

df.residual

qr

cov.unscaled

perm.method

part.method

components A list with two elements: a data.table of the observed components and p-values, and a
Nrand ×NC matrix of the null distributions of maximum component sizes.

10.4 Code example

Example usage is in the following code block.

X <- brainGraph_GLM_design(env.glm$covars.dti, coding='effects',

binarize=c('Sex', 'Scanner'))

con.mat <- cbind(0, 0, 0, 0, c(-2, 2))

rownames(con.mat) <- c('Control > Patient', 'Patient > Control')

res.nbs <- NBS(A, env.glm$covars.dti, con.mat,

coding='effects', binarize=c('Sex', 'Scanner'),

p.init=0.001, N=1e3, alternative='greater', long=TRUE)

Here is what the summary method for a NBS object returns. First are some details on user-specified

inputs. Then it prints a table of the significant components and their associated P-values.

summary(res.nbs)

##

=====================================

Network-based statistic results

=====================================

GLM formula:

weight ~ Age.MRI + Sex + Scanner + Group

based on 156 observations, with 151 degrees of freedom.

84 Chapter 10: Network-based statistic (NBS)

##

Permutation analysis

Permutation method: Freedman-Lane

Partition method: Beckmann

of permutations: 1,000

Initial p-value: 0.001

##

Contrast type: T contrast

Alternative hypothesis: C > 0

Contrasts:

Intercept Age.MRI Sex Scanner GroupPatient

Control > Patient -2

Patient > Control 2

##

Statistics

Control > Patient:

contrast # vertices # edges p-value

[1,] 1 6 5 0.001 ***

[2,] 1 4 3 0.001 ***

[3,] 1 3 2 0.006 **

[4,] 1 3 2 0.006 **

[5,] 1 2 1 0.196

[6,] 1 2 1 0.196

[7,] 1 2 1 0.196

[8,] 1 2 1 0.196

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Patient > Control:

contrast # vertices # edges p-value

[1,] 2 3 2 0.002 **

[2,] 2 2 1 0.076 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10.5 Creating a graph of the results

To create a graph with attributes specific to NBS, use make brainGraphList. This returns a list (length
equal to the number of contrasts) of graphs with several attributes (in addition to those created by
set brainGraph attr); see Table 10.1.

g.nbs <- make_brainGraphList(res.nbs, atlas=atlas)

10.6 Plotting the results 85

Level Name Description

Edge
stat The t- or F-statistics for each connection
p 1− the P-value for each connection

Vertex
comp Integer index of the connected component that each vertex is a member of
p.nbs 1− the P-value for each connected component

Table 10.1: NBS graph attributes. The graph- and vertex-level attributes that are added after calling
make brainGraphList.

10.6 Plotting the results

The default behavior of the plotting method for NBS results will only show the component(s) with a
significant effect, given some value α. As you can see in Figure 10.1, it will also plot vertices and edges of
the same component with the same color and give the plot a title containing the contrast name (this can be
over-ridden by changing the main argument). You can adjust various other aspects of the plot, as with
any other graph; for example, you could change the edge width to scale with the statistic value (by typing
edge.width=’stat’ .

plot(g.nbs[1], alpha=0.05)

10.7 Testing

For some benchmarking info, see Benchmarks. I have done some testing of this function; the t-statistics
calculated in my function matched those of the Matlab toolbox NBS; the connected component sizes differed
by only 1, and I assume this is due to their toolbox thresholding by T-statistic, whereas I threshold by p-value.
I encourage you to do your own testing if you wish.

86 Chapter 10: Network-based statistic (NBS)

Figure 10.1: Significant connected components. Vertices of the same component are plotted in the same
color.

11

Graph- and vertex-level mediation analysis

11.1: Background . 87
11.2: Notation . 88
11.3: Function arguments . 88
11.4: Return value . 90
11.5: Code example . 91
11.6: Create a graph of the results . 94
11.7: Plot a graph of the results . 94
11.8: Benchmarks . 95

Performing mediation analysis in brainGraph follows the potential outcomes framework that is implemented
in the mediation package (113), as opposed to the more well-known “Baron & Kenny approach” (6). A few
advantages of the potential outcomes framework include:

• Allows for mediation-treatment interaction and nonlinearities

• Addresses confounds

• Allows for the decomposition of the total effect into direct and indirect effects

A full treatment of mediation is beyond the scope of this document, but I provide some background here as it
can be quite difficult to understand without prior exposure.

11.1 Background

As explained in Preacher (87), the potential outcomes framework for causal inference was re-introduced (or
popularized) by Donald Rubin in the 1970’s (97, 98).1 In fact, Holland (50) calls it the Rubin Causal Model.
To re-iterate, for binary treatment variable X, the effect of X on outcome Y for case/subject i can be defined
as the difference between two potential outcomes:

1. Yi(1) – the outcome that would be realized if Xi = 1

2. Yi(0) – the outcome that would be realized if Xi = 0

We can say that X causes Y if Yi(1) 6= Yi(0). However, we can never observe both Xi = 1 and Xi = 0;
Holland (50) calls this the fundamental problem of causal inference. Under random assignment, the expected
mean between-group difference is equal to the difference in group means; i.e.,

E[Yi(1)]− E[Yi(0)] = E[Yi|Xi = 1]− E[Yi|Xi = 0]

1The notation had previously been used by Jerzy Neyman in 1923 for randomized experiments.

87

https://cran.r-project.org/web/packages/mediation/index.html

88 Chapter 11: Graph- and vertex-level mediation analysis

There are also potential outcomes for the mediator M , only one of which can be observed for a given unit i
(i.e., either Mi(1) or Mi(0)). The outcomes for unit i can then be defined using the notation Yi(Xi,Mi(Xi)),
and the indirect effect δ is defined as the “change that would occur in Y when moving from the value of M if
Xi = 0 to the value of M if Xi = 1” (Preacher 2015, p. 834). In equation form,

δi(x) = Yi(x,Mi(1))− Yi(x,Mi(0))

And under certain assumptions (see below), the average indirect effect δ̄(x) is simply the difference in expected
value: (also known as the average causal mediation effect (ACME))

δ̄(x) = E[Yi(x,Mi(1))− Yi(x,Mi(0))] (11.1)

The average direct effect (ADE) is he difference in potential outcomes between treatment groups:

ζ̄(x) = E[Yi(1,Mi(x))− Yi(0,Mi(x))] (11.2)

And, under the potential outcomes framework, the total effect is the sum of the ACME and ADE:

τ̄(x) = δi(x) + ζi(1− x) (11.3)

11.1.1 Suggested reading

An excellent review of mediation analysis can be found in Preacher (87). Specifically, the subsection “Model-
Based Tradition” (in the section “Causal Inference for Indirect Effects”) provides some historical background
in addition to a set of assumptions and implementations that fit with the approach taken in mediation.
For the earliest works, see Rubin (97); Holland (50); Robins and Greenland (95). Furthermore, Imai and
colleagues, who created the mediation package, have several papers that should be considered required
reading (56, 57, 58, 113); and see also Keele (64).

11.2 Notation

As I mentioned, it is critical that you read Tingley et al. (113). For convenience, I will include some notation
here, including the variable names as seen in the summary method.2

??.acme The average causal mediation effect (see Equation 11.1). This is typically the effect
of interest in mediation analysis. Represented by the variables d0,d1

??.ade The average direct effect (see Equation 11.2). Represented by the variables z0,z1

?.tot The total effect (see Equation 11.3). Represented by the variable tau

??.prop The proportion mediated. This is the ACME divided by the total effect. Represented
by the variables n0,n1

b.* The effect size; e.g., b.acme is the ACME estimate

ci.low.*, ci.high.* The confidence intervals; e.g., ci.low.acme

p.* The P-value; e.g., p.acme

11.3 Function arguments

There are a few arguments that are the same as in brainGraph GLM, so their descriptions are omitted here.

2The ? is a wildcard representing any single character.

11.3 Function arguments 89

args(brainGraph_mediate)

function (g.list, covars, mediator, treat, outcome, covar.names,

level = c("graph", "vertex"), control.value = 0, treat.value = 1,

int = FALSE, boot = TRUE, boot.ci.type = c("perc", "bca"),

N = 1000, conf.level = 0.95, long = FALSE, ...)

NULL

11.3.1 Mandatory

g.list As with brainGraph GLM, a “flat” list of graph objects for ≥ 1 subject group at a single
threshold/density.

covars Must have columns ’Study.ID’ and several names you supply in the function call:

treat , outcome , covar.names

mediator The name of the mediator variable; this must be a valid graph- or vertex-level attribute
(e.g., ’E.global.wt’ , ’btwn.cent’ , etc.)

treat The name of the treatment variable. A common example would be ’Group’

outcome The name of the outcome variable. This is usually going to be a non-MRI variable you
measure in the subject; e.g., IQ some other neuropsychological test/questionnaire score
(e.g., WISC processing speed, CVLT immediate recall, etc.)

covar.names Character vector of the nuisance covariates you would like to include in your analyses (e.g.,
age, sex, etc.)

11.3.2 Optional

level

control.value The value of treat to be used as the control condition. If your treat variable is a

factor, then you may wish to use the first level. The default, 0 , essentially has this effect.

treat.value The value of treat to be used as the treatment condition. If your treat variable

is a factor, then you may wish to use the second (or a higher) level. The default, 1 ,
essentially has this effect.

int Logical indicating whether or not to include a mediator-treatment interaction term. Default:
FALSE

boot Logical indicating whether or not to do bootstrap resampling for estimating confidence
intervals (CI) and statistical significance. You should always do bootstrap resampling.
Default: TRUE

boot.ci.type Character string indicating the type of bootstrap confidence intervals. The default is
’perc’ (percentile bootstrap), but you may also choose ’bca’ (bias-corrected and

accelerated). However, see Biesanz et al. (11) and Falk and Biesanz (36) which find that
the BCa approach results in inflated Type I error while the percentile bootstrap performs
well.

N Integer; number of bootstrap samples. Default: 1000

conf.level The confidence level for calculating CI’s. Default: 0.95

90 Chapter 11: Graph- and vertex-level mediation analysis

long Logical indicating whether or not to also return the statistics for each bootstrap sample.
Default: FALSE

... Arguments that are used for creating the design matrix. See Vertex-wise group analysis
(GLM) for more information; you should not specify the coding argument, thus accepting

the default coding ’dummy’

11.4 Return value

The function returns an object of class bg mediate . You will usually not work with the specific elements

of this object yourself, but I list them for completeness. Any elements that are simply input arguments are
included without description. For more details, see the help file for the mediate function in the mediation

package.

level

removed.subs

X.m The design matrix of the model in which the mediator is the outcome variable

y.m A matrix of the mediator variable; the number of columns equals the number of brain
regions

X.y A named list (the names will be the vertex/region names) of the design matrices of the
models in which the mediator is another predictor variable

y.y A numeric vector; the outcome variable specified in the function call

res.obs A data.table of the observed statistics (point estimates)

res.ci A data.table of the confidence intervals

res.p A data.table of the (two-sided) P-values

boot

boot.ci.type

res.boot A data.table of the statistics from all bootstrap samples (if long=TRUE)

treat

mediator

outcome

covariates NULL

INT The same as input argument int

conf.level

control.value

treat.value

nobs The number of observations in the data (i.e., number of rows in the design matrix)

sims The same as input argument N

covar.names

11.5 Code example 91

11.5 Code example

The following code blocks show how to run brainGraph mediate for a few different network measures. This
is basically the same approach I used in Multi-threshold permutation correction. First, I create a table with
some of the function argument values.

medVars <- data.table(level=c(rep('graph', 2), rep('vertex', 2)),

outcome='FSIQ',

mediator=c('E.global.wt', 'mod.wt', 'E.nodal.wt', 'strength'),

treat='Group',

interact=FALSE,

N=c(rep(1e4, 2), rep(5e3, 2)))

medVars

level outcome mediator treat interact N

1: graph FSIQ E.global.wt Group FALSE 10000

2: graph FSIQ mod.wt Group FALSE 10000

3: vertex FSIQ E.nodal.wt Group FALSE 5000

4: vertex FSIQ strength Group FALSE 5000

Then you can loop through these values to create a list (of lists) of bg mediate objects. I usually separate

graph- and vertex-level analyses into different objects.

Below is code to loop across all thresholds for the graph-level measures. Depending on the number of
thresholds, this can take a very long time. The list object med.list.g will have 3 “levels”:

1. The outcome variable(s) (in this case, FSIQ)

2. The mediator variable(s)

3. An element for each threshold

Note that it is not recommended that you perform analyses for every outcome-mediator combination and
then choose to report only those with significant results.

med.list.g <- sapply(medVars['graph', unique(outcome)], function(x) NULL)

for (x in names(med.list.g)) {
med.list.g[[x]] <- sapply(medVars[.('graph', x), unique(mediator)], function(x) NULL)

for (y in names(med.list.g[[x]])) {
print(paste('Outcome:', x, '; Mediator:', y, ';', format(Sys.time(), '%H:%M:%S')))

med.list.g[[x]][[y]] <- vector('list', length=length(thresholds))

for (z in seq_along(med.list.g[[x]][[y]])) {
med.list.g[[x]][[y]][[z]] <-

brainGraph_mediate(g.list[[z]], covars.med, mediator=y,

treat=medVars[.('graph', x, y), treat],

outcome=medVars[.('graph', x, y), outcome],

covar.names=c('age', 'gender', 'scanner'),

boot=T, boot.ci.type='perc', N=medVars[.('graph', x, y), N],

long=TRUE, binarize=c('gender', 'Scanner'))

}
}

}

92 Chapter 11: Graph- and vertex-level mediation analysis

11.5.1 Printing a summary

There are 2 ways to use the summary method. First, I show the result when setting mediate=TRUE ,

which uses the method from the mediation package. For this, you must select a region; if you do not, the
first (alphabetically) will be selected.

summary(res.med, mediate=TRUE, region='lHIPP')

##

=====================================

Vertex-level mediation results

=====================================

of observations: 71

##

Variables

##

Mediator: E.nodal.wt

Treatment: Group

Control condition: Control

Treatment condition: Patient

Outcome: brief_gec_raw_6m

##

Covariates: age

gender

scanner

##

Treatment-mediator interaction? FALSE

##

Bootstrapping

Bootstrap CI type: Percentile bootstrap

of bootstrap replicates: 1,000

Bootstrap CI level: [2.5% 97.5%]

Mediation summary for: lHIPP

##

Causal Mediation Analysis

##

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

##

Estimate % CI Lower % CI Upper p-value

ACME (control) 1.1049 -10.2795 11.74 0.780

ACME (treated) 1.1049 -10.2795 11.74 0.780

ADE (control) 17.4068 -0.5028 33.66 0.062 .

ADE (treated) 17.4068 -0.5028 33.66 0.062 .

Total Effect 18.5116 6.5066 29.60 0.006 **

Prop. Mediated (control) 0.0597 -0.6195 1.03 0.786

Prop. Mediated (treated) 0.0597 -0.6195 1.03 0.786

ACME (average) 1.1049 -10.2795 11.74 0.780

11.5 Code example 93

ADE (average) 17.4068 -0.5028 33.66 0.062 .

Prop. Mediated (average) 0.0597 -0.6195 1.03 0.786

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Sample Size Used: 71

##

##

Simulations: 1000

The second option will print the entire statistics table (for all regions). Since everything above the “Boot-
strapping” section is the same, I only show the summary table.

summary(res.med)$DT[]

region Mediator treat Outcome b0.acme ci.low0.acme

1: lACCU E.nodal.wt E.nodal.wt E.nodal.wt 2.14919 -5.788

2: lAMYG E.nodal.wt E.nodal.wt E.nodal.wt -0.04912 -13.119

3: lBSTS E.nodal.wt E.nodal.wt E.nodal.wt -0.29800 -5.046

4: lCAUD E.nodal.wt E.nodal.wt E.nodal.wt 0.61905 -4.795

5: lCUN E.nodal.wt E.nodal.wt E.nodal.wt -0.63081 -5.462

78: rperiCAL E.nodal.wt E.nodal.wt E.nodal.wt 0.45775 -4.196

79: rpostC E.nodal.wt E.nodal.wt E.nodal.wt -2.17657 -7.697

80: rpreC E.nodal.wt E.nodal.wt E.nodal.wt -2.30992 -9.053

81: rrACC E.nodal.wt E.nodal.wt E.nodal.wt -0.77329 -5.903

82: rrMFG E.nodal.wt E.nodal.wt E.nodal.wt -0.26909 -8.318

ci.high0.acme p0.acme b0.ade ci.low0.ade ci.high0.ade p0.ade b.tot

1: 10.532 0.534 16.36 1.660 31.48 0.024 18.51

2: 12.484 0.986 18.56 2.158 37.25 0.028 18.51

3: 3.980 0.882 18.81 7.024 30.54 0.000 18.51

4: 6.105 0.788 17.89 5.671 30.84 0.004 18.51

5: 4.165 0.812 19.14 6.044 31.80 0.004 18.51

78: 5.340 0.836 18.05 5.901 30.66 0.010 18.51

79: 1.136 0.228 20.69 9.355 33.13 0.000 18.51

80: 1.783 0.306 20.82 8.392 34.05 0.004 18.51

81: 4.079 0.750 19.28 6.186 32.49 0.008 18.51

82: 8.121 0.974 18.78 5.554 31.60 0.010 18.51

ci.low.tot ci.high.tot p.tot b0.prop ci.low0.prop ci.high0.prop

1: 6.999 30.89 0.002 0.116100 -0.3655 0.81121

2: 6.843 30.25 0.004 -0.002653 -0.8980 0.81541

3: 6.330 30.51 0.002 -0.016098 -0.4248 0.25000

4: 7.409 30.74 0.004 0.033441 -0.3170 0.40759

5: 6.893 29.39 0.000 -0.034077 -0.3772 0.28401

78: 6.609 30.62 0.002 0.024728 -0.3214 0.39066

79: 7.383 30.66 0.000 -0.117578 -0.6691 0.06401

80: 6.679 31.45 0.006 -0.124782 -0.6832 0.10843

81: 6.523 30.92 0.008 -0.041773 -0.4523 0.25909

82: 6.411 29.82 0.004 -0.014536 -0.6550 0.44658

p0.prop

1: 0.532

2: 0.986

94 Chapter 11: Graph- and vertex-level mediation analysis

Level Name Description

Graph

mediator The mediator variable
treat The treatment variable
outcome The outcome variable
nobs The number of observations

Vertex

b.acme, p.acme The point estimates and (two-sided) P-values for the ACME
b.ade, p.ade The point estimates for the ADE
b.tot, p.tot The point estimates for the total effect
b.prop, p.prop The point estimates for the proportion mediated

Table 11.1: Mediation graph attributes. The graph- and vertex-level attributes that are added after
calling make brainGraph.

3: 0.884

4: 0.784

5: 0.812

78: 0.834

79: 0.228

80: 0.312

81: 0.746

82: 0.970

11.6 Create a graph of the results

To create a graph with attributes specific to mediation analysis, use make brainGraph. This will return a
graph with several additional attributes; see Table 11.1 for the list and a brief description of them.

g.med <- make_brainGraph(res.med, atlas='dkt.scgm')

11.7 Plot a graph of the results

If you would like to plot only significant regions, you can simply call the plot method on the graph. In this
example, however, there were no vertices for which PACME < α, so I relax this for display purposes. Note
that I use the form p0.acme > X , as the P-values are actually subtracted from 1.3 I also use the default

main value for printing the plot title (which includes the names of the mediator, treatment, and outcome
variables).

plot(g.med, subgraph='p0.acme > 0.9', vertex.color='color.lobe', vertex.size=10)

3Since there is no mediator-treatment interaction, p0.acme equals p1.acme .

11.8 Benchmarks 95

Figure 11.1: Mediation results.

11.8 Benchmarks

The mediate function in the mediation package is quite slow, but very feature-rich (i.e., there are many
different types of models you can use in your analyses such as generalized additive models). In brain

Graph mediate, only simple linear models are allowed. This is a sacrifice in features but comes with a high
speed advantage. Second, mediate works with model objects (e.g., R objects of type lm). These objects are
convenient for interactive data analysis, but overall slower to work with. Third, mediate does not have a
parallel or multi-core option, whereas I take advantage of the foreach package. For a multi-region analysis
in which the same model is used for every brain region (e.g., 82 regions in the dk.scgm atlas), and with 1,000
(or more) bootstrap samples calculated, the speed increase can be large (particularly with a higher number of
bootstrap samples). Finally, I use data.table for fast calculations.

I have seen speed increases of 10x–30x. You can see the actual numbers in Benchmarks.

Part V

Group Analyses: Other

Chapter 12: Random graphs, small world, and rich-club 97

Chapter 13: Bootstrapping and permutation testing . 105

Chapter 14: Further analysis . 116

96

12

Random graphs, small world, and rich-club

12.1 Random graph generation

Random graph generation is a necessary step if you want to calculate a graph’s small-worldness.(55, 126)
However, generating an appropriate random graph is not trivial. This is particularly true when working with
data generated from correlations (e.g., structural covariance and resting-state fMRI networks), as graphs
generated from this kind of data will necessarily have a higher than expected level of clustering.(53, 134) It is
true for other data, as well, because random networks have low clustering in general. For more discussion,
see Chapter 12 of Newman (79), and also Telesford et al. (112).

12.1.1 Simple random graph generation

This is the “standard” method of creating random graphs, controlling for the observed degree distribution.
It relies on the igraph functions rewire along with keeping_degseq (see Viger and Latapy (121) for the
method used; see also Milo et al. (78)). sim.rand.graph.par generates a number of these in parallel, and
calculates modularity, clustering coefficient, average path length, global efficiency, and rich club coefficient for
each random graph. The number of rewiring steps is hard-coded to be the larger of either 10,000 or 10× the
graph’s edge count (see Ray et al. (90)).

The function analysis random graphs is a “helper function” (or script) that performs all of the steps that
are typically done when you need to create equivalent random graphs. These include:

1. Generate N random graphs for each group and density/threshold (and subject if you have subject-
specific graphs).

2. Write the random graphs to disk (in savedir).

3. Read the random graphs back into R and combine into lists ; there will be one list object per group and
density/threshold combination.

4. Write the combined list objects to disk (in a sub-directory named ALL); you can delete the individual
.rds files afterwards (after ensuring that you have all the data).

5. Calculate small world parameters, along with a few global graph measures that may be of interest.

6. Calculate normalized rich-club coefficients and associated P-values.

The return object is a list, with three elements (each one is a data.table):

rich (normalized) rich-club coefficients and p-values

small small-world parameters and related information

rand various graph-level measures for the random graphs

97

98 Chapter 12: Random graphs, small world, and rich-club

kNumRand <- 1e2

clustering <- F

outdir <- file.path(getwd(), '../rand')

rand_vars <- analysis_random_graphs(g, N=kNumRand, savedir=outdir,

clustering=clustering)

rich.dt <- rand_vars$rich

rich.dt <- rich.dt[complete.cases(rich.dt)] # Remove rows w/ NA

small.dt <- rand_vars$small

rand.dt <- rand_vars$rand

12.1.2 Control for clustering

sim.rand.graph.clust generates equivalent random graphs controlling not only for degree distribution, but
also clustering. It uses the algorithm given in Bansal et al. (4). Since you will want to generate a large
number of graphs, you should specify clustering=TRUE in the call to sim.rand.graph.par. Because this

step takes quite long, you can limit the number of Markov Chain steps with the max.iters argument.
The default is 100. Keeping this at 100 is a reasonable limit, but basically defeats the purpose of this step as
the observed level of clustering may not be reached with only 100 iterations.

The time required to generate the random graphs with this method can be quite high, and is higher for graphs
with high clustering and density. The final line shows how to calculate ω (see next section); this requires that
you have already generated simple random graphs and created small.dt (done in the previous section).

! Warning

This will take a long time. See Benchmarks for example processing times.

kNumRandClust <- 1e2 # Create 100 graphs per group/density combination

bgl.rand <- g.rand <- small.clust.dt <- vector('list', length(g))

for (i in seq_along(g)) {
g.rand[[i]] <- vector('list', length=nobs(g[[i]]))

for (j in seq_len(nobs(g[[i]]))) {
g.rand[[i]][[j]] <- sim.rand.graph.par(g[[i]][j], level=g[[i]]$level,

kNumRandClust, clustering=T,

name=g[[i]][j]$name)

}
bgl.rand[[i]] <- as_brainGraphList(g.rand[[i]], type='random', level=g[[i]]$level)

small.clust.dt[[i]] <- small.world(g[[i]], bgl.rand[[i]])

}
small.clust.dt <- rbindlist(small.clust.dt)

12.1.3 Random covariance matrices

You can also create random covariance matrices using the Hirschberger-Qi-Steuer (HQS) algorithm (49).
The function is sim.rand.graph.hqs. It generates the observed covariance matrix from residuals (output
by get.resid), but should work for any other matrix. The random covariance matrices are then scaled
to correlation matrices and the random graphs are created. By default, weighted graphs are returned in
which edge weights represent correlation values. If you want to return unweighted graphs, you must provide
correlation thresholds via the argument r.thresh .
To create random graphs for a single group, see the following code block.

12.2 Small-worldness 99

r1 <- resids[, grps[1]]

thr1 <- corrs[, 1]$thresholds[1]

g.rand.hqs <- sim.rand.graph.hqs(r1, level='group', N=100,

weighted=FALSE, r.thresh=thr1)

12.2 Small-worldness

The function small.world will calculate small world parameters, including normalized clustering coefficient
and characteristic path length, as well as the small world coefficient σ.(55) It returns a data.table with
those values. Each row corresponds to a group/density combination.

head(small.dt)

density N Lp Cp Lp.rand Cp.rand Lp.norm Cp.norm sigma Group

1: 0.05004 100 3.252 0.5445 2.633 0.1576 1.235 3.455 2.797 Control

2: 0.06014 100 2.888 0.5483 2.522 0.1747 1.145 3.139 2.740 Control

3: 0.07024 100 2.868 0.5468 2.452 0.1891 1.170 2.891 2.471 Control

4: 0.08033 100 2.699 0.5209 2.353 0.2119 1.147 2.458 2.143 Control

5: 0.09043 100 2.571 0.5203 2.283 0.2331 1.126 2.232 1.982 Control

6: 0.10009 100 2.408 0.5272 2.194 0.2517 1.098 2.095 1.908 Control

To calculate ω (see Telesford et al. (112)), which is a better metric for small-worldness, you will have to:

1. Generate simple random graphs to get the characteristic path length Lrand (see previous section).

2. Create random graphs controlling for the level of clustering, and use the clustering coefficient of these
random graphs as the value for equivalent lattice networks (Clatt)

3. The values L and C are characteristic path length and clustering coefficient, respectively, for the
observed graphs.

The equations for both σ and ω are:

σ =
C/Crand
L/Lrand

(12.1)

ω =
Lrand
L
− C

Clatt
(12.2)

The only downside to this approach is the processing time needed. As I mentioned earlier, a reasonable
compromise would be to limit the number of Markov Chain steps (via the max.iters function argument),
as even with only 100 iterations, the resultant graphs will be much closer to a lattice than a simple random
graph controlling only for degree distribution.

The R code for calculating ω is:

setkey(small.dt, Group, density)

setkeyv(small.clust.dt, key(small.dt))

small.dt[, omega := small.dt[, Lp.rand / Lp] - small.clust.dt[, Cp / Cp.rand]]

small.dt[, Lp.latt := small.clust.dt$Lp.rand]

small.dt[, Cp.latt := small.clust.dt$Cp.rand]

small.long <- melt(small.dt, id.vars=c('density', 'Group', 'N'))

100 Chapter 12: Random graphs, small world, and rich-club

To show that the random graph generation approach from the last section does result in networks with higher
clustering, we can plot these values, shown in Figure 12.1. As you can see, the random graphs generated by
the Markov Chain process (dotted lines) have a similar clustering level as the observed networks (solid lines).
As expected, the “simple” random graphs have much lower clustering. This is also reflected in the much
higher normalized clustering coefficients in calculating σ.

If you refer back to Equation 12.1 and Equation 12.2, the normalized path length will roughly equal 1; i.e.,
L/Lrand ≈ Lrand/L ≈ 1. It is also the case that C/Crand � 1 and C/Clatt ≈ 1. So we should see σ � 1 and
ω ≈ 0, which is confirmed in Figure 12.2.

ggplot(small.dt.m, aes(x=density, y=value, col=interaction(Group, variable),

lty=interaction(Group, variable))) +

geom_line(size=1.25) +

scale_linetype_manual(name='Group, type',

labels=mylabels.sm,

values=rep(1:3, each=2)) +

scale_color_manual(name='Group, type',

labels=mylabels.sm,

values=rep(c('red', 'cyan3'), 3)) +

labs(x='Density', y='Clustering coefficient')

0.2

0.3

0.4

0.5

0.6

0.05 0.10 0.15 0.20
Density

C
lu

st
er

in
g

co
ef

fic
ie

nt

Group, type

Control, Cp

Patient, Cp

Control, rand

Patient, rand

Control, latt

Patient, latt

Figure 12.1: Clustering coefficients for random networks. The solid lines are clustering for the observed
networks. The dotted line are values from networks generated by the Markov Chain approach,
and the dashed lines are values from networks generated by the “simple” approach.

We can plot both σ and ω in the same plot, shown in Figure 12.2. As stated in Telesford et al. (112), networks
with ω closer to 0 indicate more balance between high clustering and low path length; networks with ω closer

12.2 Small-worldness 101

to −1 are more similar to a lattice network. The results of this analysis indicate that the Patient group’s
networks at higher density are closer to a lattice than the Control networks.

small.long[, yint := 1]

small.long[variable == 'omega', yint := 0]

ggplot(small.long[variable %in% c('sigma', 'omega')],

aes(x=density, y=value, col=Group, group=Group)) +

geom_line() +

geom_hline(aes(yintercept=yint), lty=2) +

facet_wrap(~ variable, scales='free_y', ncol=1) +

theme(legend.position=c(1, 1), legend.justification=c(1, 1)) +

ylab('Small-worldness')

omega

sigma

0.05 0.10 0.15 0.20

1.0

1.5

2.0

2.5

−0.4

−0.3

−0.2

−0.1

0.0

density

S
m

al
l−

w
or

ld
ne

ss

Group

Control

Patient

Figure 12.2: Small-world indexes. (top) The classic small-world index, σ; the dashed horizontal line at
y = 1 is included to show the minimum value for a network to be considered “small-world” (126)
(bottom) The small-world index ω introduced by Telesford et al. (112); the dashed horizontal
line at y = 0 indicates the value at which the network displays a balance between clustering
coefficient and characteristic path length.

102 Chapter 12: Random graphs, small world, and rich-club

Level Name Description

Vertex
rich Binary value indicating whether or not the vertex is in the rich club

color.rich Either red (rich-club vertices) or gray (non-rich-club vertices)

size.rich Either 3 (non-rich-club vertices), or 15 (rich-club vertices)

Edge
type.rich Either rich-club (edges connecting 2 rich-club vertices), feeder

(edges connecting 1 rich-club and 1 non-rich-club vertex), or local (edges
connecting 2 non-rich-club vertices)

color.rich Either red (rich-club connections), orange (feeder connections), or

green (local connections)

size.rich Either 3.5 (rich-club connections), 1.5 (feeder connections), or 0.5

(local connections)

Table 12.1: Rich-club graph attributes. The and vertex- and edge-level attributes that are added after
calling rich club attrs.

12.3 Rich-club Analysis

The rich club is a set of vertices that have a high degree themselves and which also have a high probability of
being connected to one another (see Colizza et al. (16), Zhou and Mondragón (135)).
When creating random graphs with analysis random graphs, normalized rich-club coefficients and P-values

were also calculated (now in rich.dt). This will be used later for plotting.

12.3.1 Rich-core

A recent paper provided an algorithm for determining the cut-off degree for inclusion in the rich club (71).
The function to calculate this is called rich core. The degree value is given in the output data frame, with

column name k.r (k stands for degree and the r is for rank). You can calculate the rich-core for
both binary and weighted graphs. In the next code section, I show how to plot a shaded region that starts at
the maximum cut-off value from 2 groups which is automatically calculated by the plotting function.

12.3.2 Rich-club plots

Then plot the data using the function plot rich norm. A plot of the normalized rich club coefficients for
each group and 2 example densities is shown in Figure 12.3.1 The shaded region is based on the rich-core
calculation; this option is selected if you provide a list of graph objects to the argument g . You can also

choose to specify significance based on the regular P-values or FDR-adjusted P-values (the default), via the
fdr function argument).

plot_rich_norm(rich.dt, facet.by='density', densities[11:12], g.list=g)

12.3.3 Rich-club attributes

The function rich club attrs will assign vertex- and edge-level attributes based on membership in the
rich-club. The function requires a range of degrees in which φnorm > 1 was determined to be significant. See
Table 12.1 for a list and description of the attributes assigned by the function.
An example plot is shown in Figure 12.4. This isn’t the best solution, but clearly highlights the rich-club
vertices. The code can easily be adjusted to increase the size of other vertices/edges.

1These probably don’t look like the “familiar” plots from the literature; this is likely because I chose to generate a small
number of random graphs.

12.4 Single-subject networks 103

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

0.15 0.16

0 5 10 15 20 25 0 5 10 15 20 25

1.0

1.2

1.4

0.8

1.0

1.2

1.4

Degree (k)

φ n
or

m

get(gID) Control Patient

Figure 12.3: Normalized rich club coefficient vs. degree

g[[N]]$graphs[[1]] <- rich_club_attrs(g[[N]][1], c(rich_core(g[[N]][1])$k.r, 12))

Alternatively, the degree range could use the following command, but in the

current example, the number of random graphs was very low

#rich.dt[density == densities[N] & Group == grps[1] & p.fdr < 0.05, range(k)]

plot(g[[N]][1], vertex.label=NA, vertex.color='color.rich', edge.color='color.rich',

edge.width='size.rich', vertex.size='size.rich', show.legend=TRUE)

12.4 Single-subject networks

To generate random graphs in the case of single-subject data, the code is largely the same as in Random
graph generation. Just substitute g.norm for g (or whatever your graph list object happens to be named).
The function analysis random graphs will return a data.table with the normalized rich club coefficients
and P-values. The code in the following block may be necessary if you later want to plot these results.

rich.dt[, Group := as.factor(Group)]

rich.dt <- rich.dt[complete.cases(rich.dt)]

For single-subject data (e.g., DTI tractography or rs-fMRI), you will have to change the function call of
plot rich norm to facet.by=’threshold’ (assuming this is how you generated the connectivity matrices

104 Chapter 12: Random graphs, small world, and rich-club

Figure 12.4: Rich-club attributes.

to begin with). Furthermore, the default behavior is to plot a loess smoother ; if you would like to see an
individual line for each subject, then you must specify smooth=FALSE .

plot_rich_norm(rich.dt, facet.by='threshold', thresholds[1:5])

13

Bootstrapping and permutation testing

13.1 Bootstrapping

In structural covariance analyses, since there is only one graph per group (at a given density)—as atlas-based
brain regions typically are different sizes—it is not possible to directly compute the within-group variability
of graph measures (e.g., modularity). In this case, bootstrapping is necessary. The function brainGraph boot

will perform bootstrap resampling in this case; the boot package does all of the resampling.(23)

13.1.1 Function arguments

args(brainGraph_boot)

function (densities, resids, R = 1000, measure = c("mod", "E.global",

"Cp", "Lp", "assortativity", "strength", "mod.wt", "E.global.wt"),

conf = 0.95, .progress = getOption("bg.progress"), xfm.type = c("1/w",

"-log(w)", "1-w", "-log10(w/max(w))", "-log10(w/max(w)+1)"))

NULL

densities The (numeric) vector of network densities (since the function creates networks of the same
density for bootstrap samples).

resids The brainGraph resids object output by get.resid.

R Integer; the number of bootstrap samples to generate (default: 1000 .

measure Character string indicating which global graph metric to test (default: ’mod’ ; i.e., modularity)

conf The confidence level; the default, 0.95 , returns 95% confidence intervals.

.progress Logical indicating whether or not to print a progress bar (default: getOption, bg.progress

.

There are several graph-level metrics you can choose from; currently, the options are: modularity (weighted
and unweighted), global efficiency (weighted and unweighted), clustering coefficient, characteristic path length,
(degree) assortativity, and mean graph strength. Your data may also have an arbitrary number of groups (i.e.,
not just 2).

105

106 Chapter 13: Bootstrapping and permutation testing

13.1.2 Return value

The returned object is of class brainGraph boot , containing:

measure The global graph measure

densities The vector of densities

Group A character vector of the group names

conf The confidence level

boot A list (with length equal to the number of groups). Each element of the list is an object of class

boot. See the help file for more information (by typing help(boot)).

13.1.3 Code example

In the following code block, I show how to estimate the standard error and confidence intervals for modularity.

For modularity, the Louvain algorithm is used

kNumBoot <- 1e3

bootmod <- brainGraph_boot(densities, resids, R=kNumBoot, measure='mod',

.progress=FALSE)

The summary method prints some analysis-specific information, and then a data.table with the observed

values, standard errors, and confidence intervals for each group and density tested.

summary(bootmod)

##

=====================================

Bootstrap analysis

=====================================

Graph metric: Modularity

Number of bootstrap samples generated: 1000

95 % confidence intervals

##

Group density Observed se ci.low ci.high

1: Control 0.05 0.5621 0.05262 0.5112 0.7175

2: Control 0.06 0.5410 0.05273 0.4935 0.7002

3: Control 0.07 0.5292 0.05373 0.4906 0.7012

4: Control 0.08 0.4938 0.05408 0.4401 0.6521

5: Control 0.09 0.4696 0.05347 0.4107 0.6203

6: Control 0.10 0.4405 0.05359 0.3693 0.5793

7: Control 0.11 0.4166 0.05247 0.3397 0.5454

8: Control 0.12 0.3983 0.05187 0.3188 0.5221

9: Control 0.13 0.3803 0.05086 0.2982 0.4976

10: Control 0.14 0.3816 0.04987 0.3154 0.5109

11: Control 0.15 0.3664 0.04873 0.2991 0.4901

12: Control 0.16 0.3541 0.04737 0.2885 0.4742

13: Control 0.17 0.3477 0.04620 0.2888 0.4699

14: Control 0.18 0.3191 0.04501 0.2432 0.4196

15: Control 0.19 0.3119 0.04372 0.2404 0.4118

16: Control 0.20 0.2959 0.04254 0.2201 0.3869

17: Patient 0.05 0.5420 0.05245 0.4350 0.6406

13.2 Permutation testing 107

18: Patient 0.06 0.5249 0.04938 0.4313 0.6249

19: Patient 0.07 0.5268 0.04577 0.4643 0.6438

20: Patient 0.08 0.5073 0.04340 0.4503 0.6204

21: Patient 0.09 0.4921 0.04187 0.4412 0.6053

22: Patient 0.10 0.4875 0.03993 0.4518 0.6083

23: Patient 0.11 0.4710 0.03834 0.4376 0.5879

24: Patient 0.12 0.4799 0.03681 0.4739 0.6182

25: Patient 0.13 0.4559 0.03530 0.4429 0.5813

26: Patient 0.14 0.4364 0.03465 0.4176 0.5534

27: Patient 0.15 0.4158 0.03395 0.3910 0.5241

28: Patient 0.16 0.3970 0.03233 0.3692 0.4959

29: Patient 0.17 0.3812 0.03139 0.3507 0.4737

30: Patient 0.18 0.3748 0.03065 0.3501 0.4702

31: Patient 0.19 0.3657 0.02972 0.3439 0.4604

32: Patient 0.20 0.3452 0.02906 0.3141 0.4280

Group density Observed se ci.low ci.high

13.1.4 Plotting the results

The shaded regions in the top of Figure 13.1 are ±1 standard error, and in the bottom represent the 95%
confidence region (calculated using the normal approximation). I use the function grid.arrange to plot
both in the same plot device.

bootmod.p <- plot(bootmod)

p1 <- bootmod.p$se + theme(legend.position=c(1, 1), legend.justification=c(1, 1))

p2 <- bootmod.p$ci + theme(legend.position=c(1, 1), legend.justification=c(1, 1))

gridExtra::grid.arrange(p1, p2)

13.2 Permutation testing

Bootstrapping can give you an estimate of the variability of a group measure (e.g., modularity). In order to
determine the significance of a between-group difference, you need to do permutation testing.

13.2.1 Function arguments

args(brainGraph_permute)

function (densities, resids, N = 5000, perms = NULL, auc = FALSE,

level = c("graph", "vertex", "other"), measure = c("btwn.cent",

"coreness", "degree", "eccentricity", "clo.cent", "communicability",

"ev.cent", "lev.cent", "pagerank", "subg.cent", "E.local",

"E.nodal", "knn", "Lp", "transitivity", "vulnerability"),

.function = NULL)

NULL

densities

resids

N The number of permutations. Default: 5000

108 Chapter 13: Bootstrapping and permutation testing

0.3

0.4

0.5

0.6

0.05 0.10 0.15 0.20
density

M
od

ul
ar

ity

get(gID)

Control

Patient

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.10 0.15 0.20
density

M
od

ul
ar

ity

get(gID)

Control

Patient

Figure 13.1: Bootstrap analysis. Modularity plotted across densities

perms A permutation matrix, if you would like to supply your own

auc Logical indicating whether or not to calculate differences in the area-under-the-curve (AUC) of
the graph metrics. Default: FALSE

level Character string indicating which level the network measure is (either graph, vertex, or “other”).
If level=’other’ , then you must supply a custom function via .function (see below)

measure Character string indicating the name of the network measure to calculate

.function A custom function if you would like to calculate permutation differences for a network measure
that is not hard-coded.

13.2.2 Return value

The function returns an object of class brainGraph permute , with elements:

atlas

auc

N

level

13.2 Permutation testing 109

measure

densities

resids

DT A data.table with the permutation differences for each density (if auc=FALSE), and each

region (there are multiple if level=’vertex’).

obs.diff A data.table of the observed group difference. The number of rows equals the number of
densities. If level=’vertex’ , the number of columns equals the number of regions.

Group Character vector of group names

13.2.3 Graph-level

Several graph-level measures are calculated: modularity, clustering coefficient, average path length, assortativity
(degree and lobe), asymmetry, and global efficiency.

kNumPerms <- 1e3

myPerms <- permute::shuffleSet(n=nobs(resids), nset=kNumPerms)

perms.all <- brainGraph_permute(densities, resids, perms=myPerms,

level='graph')

For the summary method, if level=’graph’ , then you must choose which network measure to

summarize. You additionally specify an alternative hypothesis, alpha level, and which P-value to

use for determining significance (either the standard P-value, or FDR-adjusted). Here, I show the summary
for Lp . In this case, the group difference was significant for only one density.

summary(perms.all, measure='Lp', alt='less')

##

=====================================

Permutation analysis

=====================================

of permutations: 1,000

Level: graph

Graph metric: Characteristic path length

Alternative hypothesis: Control - Patient < 0

Alpha: 0.05

##

densities region Lp.Control Lp.Patient obs.diff perm.diff 95% CI low

1: 0.05 graph 3.042 4.754 -1.7123 -0.22302 -1.4956

2: 0.06 graph 2.896 4.024 -1.1281 -0.20345 -0.9930

3: 0.07 graph 2.985 3.831 -0.8461 -0.16363 -0.8095

4: 0.09 graph 2.579 3.053 -0.4743 -0.04932 -0.4431

95% CI high p p.fdr

1: 2.1486 0.02697 0.1718

2: 1.8582 0.03297 0.1718

3: 1.7304 0.04296 0.1718

4: 0.6577 0.03996 0.1718

110 Chapter 13: Bootstrapping and permutation testing

Plotting: graph-level

The plot method has the same arguments as the summary method, and returns a list with two ggplot

objects:

1. A line plot of the observed graph-level measure across densities, with an asterisk added if p < α; a blue
asterisk is added if α < p < 0.10 (i.e., a “trend” towards significance). This is shown in Figure 13.2.

2. A line plot of the observed group difference across densities. Also shown are dashed lines of the (1−α)%
confidence interval based on the permutation distribution (see Figure 13.3 and the following paragraph).

permPlot <- plot(perms.all, measure='Lp', alt='less')

print(permPlot[[1]])

* * * ** * * ** * * ** * * ** * * ** * * ** * * ** * * *********
2

3

4

0.05 0.10 0.15 0.20
Density

O
bs

er
ve

d
va

lu
es

Group Control Patient

Characteristic path length

Figure 13.2: Permutation testing, graph-level. Observed avg. path length across densities

Instead of plotting the observed value for both groups, you can also plot the group differences along with
a (1 − α)% confidence interval. In Figure 13.3, the red line indicates observed between-group differences,
the central dashed line is the mean permutation difference, and the outer dashed lines are upper and lower
bounds. In this example, I used a one-sided test, assuming group 1 would be lower than group 2.

print(permPlot[[2]])

13.2 Permutation testing 111

●

●

●

● ●

●
● ●

●
● ●

●

● ● ● ●

●

●

●

● ●

●
● ●

●
● ●

●

● ● ● ●

−1

0

1

2

0.05 0.10 0.15 0.20
Density

O
bs

er
ve

d
an

d
pe

rm
ut

at
io

n
di

ffe
re

nc
e

(C
on

tr
ol

 −
 P

at
ie

nt
)

Observed diff. 95% CI Mean permutation diff.

Characteristic path length

Figure 13.3: Permutation testing, graph-level. Observed and permuted differences in avg. path length
across densities

13.2.4 Vertex measures

You can also do permutation testing for vertex -level measures (e.g., betweenness centrality) to look for group
differences. See Wang et al. (122) for an example application.

Since a calculation is required at each vertex for each permutation and density, this may take considerably
longer than in the previous section. Other vertex-level measures that are hard-coded are: degree, k-nearest
neighbor degree, nodal efficiency, transitivity, and vulnerability.

perms.btwn <- brainGraph_permute(densities[N:(N+5)], resids,

perms=myPerms, level='vertex')

The summary method has the same type of output as with graph-level measures:

summary(perms.btwn)

##

=====================================

Permutation analysis

=====================================

of permutations: 1,000

Level: vertex

Graph metric: Betweenness centrality

112 Chapter 13: Bootstrapping and permutation testing

Alternative hypothesis: Control - Patient != 0

Alpha: 0.05

##

densities region btwn.cent.Control btwn.cent.Patient obs.diff

1: 0.10 lMTG 27.476 10.136 185.30

2: 0.10 lPARH 0.000 0.000 59.00

3: 0.10 lpTRI 0.000 0.000 192.84

4: 0.10 rFUS 114.362 194.472 295.43

5: 0.10 rINS 24.391 1.982 106.11

6: 0.10 rMOF 0.000 11.374 124.60

7: 0.10 rTT 0.000 0.000 116.50

8: 0.11 rSTG 299.871 5.214 301.48

9: 0.12 lMTG 16.904 22.490 95.09

10: 0.12 rpreC 2.387 31.713 162.09

11: 0.13 rIPL 108.111 12.938 205.15

12: 0.13 rPCUN 73.254 4.451 209.69

13: 0.13 rTT 0.000 7.167 32.04

14: 0.14 lENT 3.918 1.020 29.61

15: 0.14 rSFG 205.756 306.672 -238.63

16: 0.14 rSTG 217.811 14.467 266.79

17: 0.15 lLOF 70.983 249.158 -178.17

perm.diff 95% CI low 95% CI high p p.fdr

1: 8.2428 -53.54 99.48 0.002997 0.2038

2: 3.3085 0.00 59.00 0.027972 0.3804

3: 14.9290 -47.19 137.43 0.008991 0.2038

4: -1.7625 -282.64 281.35 0.036963 0.3979

5: 13.9375 -66.62 111.92 0.040959 0.3979

6: 5.5597 -78.84 114.94 0.014985 0.2547

7: 3.4196 -10.62 43.72 0.005994 0.2038

8: 1.5148 -200.50 222.59 0.008991 0.6114

9: 8.0423 -44.79 82.35 0.012987 0.8831

10: 9.1818 -122.28 172.66 0.041958 0.9689

11: 8.1207 -144.67 172.07 0.017982 0.6114

12: 10.9281 -139.43 183.18 0.017982 0.6114

13: 3.7009 -15.06 56.03 0.043956 0.9510

14: 4.2643 -11.32 44.12 0.046953 0.8067

15: -37.8341 -258.53 180.65 0.043956 0.8067

16: -1.0917 -197.70 196.71 0.008991 0.6114

17: 0.4554 -146.28 170.13 0.030969 0.8967

Plotting: vertex-level

The plot method for vertex-level measures is slightly different. There is only one type of plot, a barplot

of the permutation differences at those vertices for which Psig < α (depending on the function arguments).
The output is shown in Figure 13.4; the horizontal red line segments represent the observed between-group
differences.

plot(perms.btwn)

13.2.5 Area-under-the-curve (AUC)

You can, alternatively, calculate the between-group difference in the area-under-the-curve (AUC) of a given
graph- or vertex-level measure across all densities (see e.g., He et al. (48), Hosseini et al. (54)). The usage is

13.2 Permutation testing 113

● ●
●

●
●

● ●

● ●
●

●

●

●

●

● ●

●

0.13 0.14 0.15

0.1 0.11 0.12

rIPL rPCUN rTT lENT rSFG rSTG lLOF

lMTGlPARHlpTRIrFUSrINSrMOFrTT rSTG lMTG rpreC

−100

0

100

−100

0

100

−200

−100

0

100

200

300

−200

−100

0

100

200

−300

−200

−100

0

100

200

300

−100

0

100

200

Region

O
bs

er
ve

d
an

d
pe

rm
ut

at
io

n
di

ffe
re

nc
e

(C
on

tr
ol

 −
 P

at
ie

nt
)

Betweenness centrality

Figure 13.4: Permutation testing, vertex-level. Group differences in vertex betweenness centrality
(observed difference in red)

identical to that of the previous sections, except you add auc=TRUE to the function call.

kNumPerms.auc <- 1e2

myPerms.auc <- permute::shuffleSet(n=nobs(resids), nset=kNumPerms.auc)

perms.all.auc <- brainGraph_permute(densities, resids, perms=myPerms.auc,

level='graph', auc=TRUE)

Similarly, this can be done for vertex-level measures. The plot method will only work if level=’vertex’

.

perms.btwn.auc <- brainGraph_permute(densities, resids, perms=myPerms.auc,

level='vertex', auc=TRUE)

plot(perms.btwn.auc, alt='less')

114 Chapter 13: Bootstrapping and permutation testing

●

●

● ●●

1

lcMFG lINS lLOF lPARH lTP

−20

0

20

40

Region

O
bs

er
ve

d
an

d
pe

rm
ut

at
io

n
di

ffe
re

nc
e

(C
on

tro
l −

 P
at

ie
nt

)

Betweenness centrality

Figure 13.5: Permutation testing, vertex-level. Group differences in AUC of vertex betweenness central-
ity (observed difference in red)

13.2.6 Custom function

Perhaps the nicest feature of brainGraph permute is one that mimics the boot function: you can choose to
pass a custom function if you want to calculate permutations for a graph measure that I didn’t hard-code.
Your custom function must take 2 arguments:

g A list (of lists) of graph objects

densities The (numeric) vector of densities

The following example shows the code necessary to calculate the difference in AUC for closeness centrality.
This example only does 100 permutations per density, which only takes 40 seconds (total, for all 36 densities).

Custom function: determine difference in closeness centrality

clocent.diffs.perm <- function(g, densities) {
meas <- lapply(g, function(x) t(sapply(x, function(y) centr_clo(y)$res)))

meas.diff <- sapply(seq_along(V(g[[1]][[1]])), function(x)

brainGraph:::auc_diff(densities, cbind(meas[[1]][, x], meas[[2]][, x])))

tmp <- as.data.table(t(meas.diff))

setnames(tmp, 1:ncol(tmp), V(g[[1]][[1]])$name)

return(tmp)

}

perms.clocent <- brainGraph_permute(densities, resids, perms=myPerms[1:1e2,],

13.2 Permutation testing 115

level='other', .function=clocent.diffs.perm,

auc=TRUE)

Since auc=TRUE , the summary method only shows results from one “density”:

summary(perms.clocent, alt='less')

##

=====================================

Permutation analysis

=====================================

of permutations: 100

Level: vertex

Graph metric:

Area-under-the-curve (AUC) calculated across 16 densities:

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Alternative hypothesis: Control - Patient < 0

Alpha: 0.05

##

No significant results!

14

Further analysis

There is of course much more you can do with network data. In this Chapter I will briefly describe some of
what is available in my package, and how to perform these analyses.

14.1 Robustness

14.1.1 Targeted attack

A targeted attack analysis can give further insight into a network’s connectivity. In this analysis, you first
sort vertices in order (from high to low) of a measure of “strength” of some kind. In my function,
robustness, the choices for strength are either degree or betweenness centrality. Vertices are successively
removed, and the maximal component size is calculated. (Edges may also be removed in order of edge
betweenness). See Albert et al. (1), Bernhardt et al. (10) for more information.

Here, I will successively remove vertices ordered both by their degree and their betweenness centrality, and
plot, for each group (at a single density), the ratio of the remaining maximal component size to the initial
maximal component size. The result is shown in Figure 14.1.

attack.vertex.degree <- rbindlist(lapply(g[[N]][], robustness, 'vertex', 'degree'))

attack.vertex.btwn <- rbindlist(lapply(g[[N]][], robustness, 'vertex', 'btwn.cent'))

attack.vertex <- rbind(attack.vertex.degree, attack.vertex.btwn)

attack.edge <- rbindlist(lapply(g[[N]][], robustness, 'edge'))

mylabels <- sub('\\.', ', ', attack.vertex[, levels(interaction(Group, measure))])

attack <- ggplot(data=attack.vertex,

aes(x=removed.pct, y=comp.pct, col=interaction(Group, measure),

linetype=interaction(Group, measure))) +

geom_line() +

geom_abline(slope=-1, intercept=1, col='gray', lty=2) +

scale_color_manual(name='Group & type',

labels=mylabels,

values=rep(c('red', 'cyan3'), times=2)) +

scale_linetype_manual(name='Group & type',

labels=mylabels,

values=c(1, 1, 2, 2)) +

theme(legend.position=c(1, 1), legend.justification=c(1, 1))

print(attack)

If you are interested in vulnerability, see the function vulnerability; also, each graph is given both global-
and vertex-level attributes called vulnerability through set brainGraph attr.

116

14.1 Robustness 117

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
removed.pct

co
m

p.
pc

t

Group & type

Control, btwn.cent

Patient, btwn.cent

Control, degree

Patient, degree

Figure 14.1: Maximal component size as a function of vertices removed.

14.1.2 Random failure

In a random failure analysis, you choose a vertex/edge at random, remove it, and calculate the maximum
component size until all elements have been removed. This is repeated for many iterations (I only use 100 to
save time).

Many graphs should be relatively robust to this kind of removal for both vertices and edges. The plot is
shown in Figure 14.2, and includes the targeted attack plots.

failure.vertex <- rbindlist(lapply(g[[N]][], robustness, measure='random', N=1e2))

failure.edge <- rbindlist(lapply(g[[N]][], robustness, 'edge', 'random', 1e2))

failure.dt <- rbind(failure.edge, failure.vertex)

robustness.dt <- rbind(failure.dt, attack.vertex.btwn, attack.edge)

ggplot(robustness.dt, aes(x=removed.pct, y=comp.pct, col=Group)) +

geom_line() +

facet_wrap(~ type) +

geom_abline(slope=-1, intercept=1, col='gray', lty=2) +

theme(legend.position=c(0, 0), legend.justification=c(0, 0)) +

labs(x='% edges/vertices removed', y='% of max. component remaining')

118 Chapter 14: Further analysis

Targeted edge attack Targeted vertex attack

Random edge removal Random vertex removal

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

% edges/vertices removed

%
 o

f m
ax

. c
om

po
ne

nt
 r

em
ai

ni
ng

Group

Control

Patient

Figure 14.2: Maximal component size as a function of vertices (edges) removed.

14.2 Euclidean distance

It’s very easy to get the spatial distance of edges. However, note that this distance is Euclidean (i.e., it
doesn’t follow a geodesic along the cortical surface), and it is based on coordinates that represent (roughly)
the median coordinates of the atlas in MNI space.

You will notice that in my code, I use a Kruskal-Wallis test. This is an extension of the Wilcoxon test
allowing for an arbitrary number of subject groups. If you only have 2 groups, then it is equivalent to a
Wilcoxon test.

create_dists_dt <- function(g.list) {
rbindlist(lapply(g.list[], function(x)

data.table(density=x$density, dists=E(x)$dist, Group=x$Group)))

}

dists.dt <- rbindlist(lapply(g, create_dists_dt))

dists.dt[, Group := as.factor(Group)]

setkey(dists.dt, density, Group)

dists.dt[, med.dist := median(dists), by=.(density, Group)]

14.3 Individual contributions 119

Do a Kruskal-Wallis test at each density

dists.dt[, p := kruskal.test(dists ~ as.numeric(Group))$p.val, by=density]

p.dt <- dists.dt[, .(density=unique(density), p.fdr=p.adjust(unique(p), 'fdr'))]

dists.dt <- merge(dists.dt, p.dt, by='density')

dists.dt$sig <- ifelse(dists.dt$p.fdr < .05, '*', '')

dists.dt$trend <- with(dists.dt,

ifelse(p.fdr > .05 & p.fdr < .1, '*', ''))

The following code example and Figure 14.3 show group-wise histograms of edge distances for 2 densities. In
this case, the control group tends to have more long-range connections.

Plot at a couple densities

plot_dists_density <- function(dists.dt, densities) {
dat <- dists.dt[density %in% densities]

meandt <- dat[, .(avg=median(dists)), by=c('density', 'Group')]

distplot <- ggplot(dists.dt[density %in% densities], aes(x=dists)) +

geom_histogram(aes(y=..density.., fill=Group),

binwidth=10, alpha=0.4, position='dodge') +

geom_vline(data=meandt, aes(xintercept=avg, col=Group), lty=2, size=0.5) +

facet_grid(. ~ density) +

geom_density(aes(col=Group), size=0.8) +

xlab('Edge distance (mm)') +

theme(legend.position=c(1, 1), legend.justification=c(1, 1),

legend.background=element_rect(size=0.5))

return(distplot)

}
print(plot_dists_density(dists.dt, densities[N:(N+1)]))

You can also plot the average edge distance across all densities, with a shaded region signifying the confidence
interval (here I plot the 99th %ile). This is shown in Figure 14.4.

plot_dists_mean <- function(dists.dt) {
ggplot(dists.dt, aes(x=density, y=dists, col=Group)) +

stat_smooth(level=.99) +

geom_text(aes(y=51, label=sig), col='red', size=7) +

geom_text(aes(y=51, label=trend), col='blue', size=7) +

ylab('Edge distance (mm)') +

theme(legend.position=c(1, 0.25), legend.justification=c(1, 0),

legend.background=element_rect(size=0.5))

}
print(plot_dists_mean(dists.dt))

14.3 Individual contributions

Saggar et al. (2015) recently introduced two methods for estimating the individual contributions of subjects
to a group graph (100). I wrote two functions to calculate these measures: aop (“add-one-patient”) and loo

(“leave-one-out”). This is useful for structural covariance networks in which there is just a single graph for
each group. For both functions, you can calculate either a “global” or a “regional” metric. For the global
metrics, these can easily be merged with other data so you can correlate the individual contribution (IC)
with some variable of interest (e.g., full-scale IQ (FSIQ)).

120 Chapter 14: Further analysis

0.1 0.11

0 50 100 150 0 50 100 150

0.000

0.005

0.010

0.015

Edge distance (mm)

de
ns

ity

Group

Control

Patient

Figure 14.3: Edge distances (in mm)

14.3.1 Add one patient

With this method, a comparison is made between the correlation matrix of the entire control group and a
correlation matrix of the control group with a single patient added. In the code sample below, it is assumed
that the control group is group 1 (this can be changed by the argument control.value . The code will
work with any number of groups (i.e., if you have one control group and multiple patient groups).

IC.aop <- aop(resids, corrs)

RC.aop <- aop(resids, corrs, level='regional')

summary(RC.aop)

##

Individual contributions

Method: Add one patient

Level: regional

##

Number of outliers per region: (sorted in descending order)

rLING rMOF rpTRI lFUS lparaC lSPL lTP rPARH

8 8 7 6 6 6 6 6

rPCC rSFG lCUN lIPL liCC lLING lpreC lrACC

14.3 Individual contributions 121

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
50

60

70

0.05 0.10 0.15 0.20

density

E
dg

e
di

st
an

ce
 (m

m
)

Group

Control

Patient

Figure 14.4: Average edge distances (in mm) with 99% confidence intervals

6 6 5 5 5 5 5 5

lSFG rMTG rparaC rpORB rpostC rpreC rPCUN rFP

5 5 5 5 5 5 5 5

lITG lLOF lMOF lpORB lpTRI lPCC lPCUN lrMFG

4 4 4 4 4 4 4 4

lFP lTT rcACC rcMFG rFUS rIPL rITG rLOG

4 4 4 4 4 4 4 4

rLOF rperiCAL rrMFG rSTG rTP lcACC lcMFG lENT

4 4 4 4 4 3 3 3

lMTG lperiCAL lpostC lSMAR lINS rBSTS rENT rpOPER

3 3 3 3 3 3 3 3

rrACC rTT rINS lBSTS lPARH lpOPER lSTG rCUN

3 3 3 2 2 2 2 2

riCC rSPL rSMAR lLOG

2 2 2 1

##

Group region avg stdev se

1: Patient lBSTS 0.9419 0.8990 0.09373

2: Patient lcACC 0.9684 0.6882 0.07175

3: Patient lcMFG 1.0546 0.9803 0.10221

4: Patient lCUN 0.8047 0.6834 0.07124

5: Patient lENT 0.9493 0.7151 0.07456

122 Chapter 14: Further analysis

64: Patient rSMAR 0.7490 0.5057 0.05272

65: Patient rFP 0.8888 0.6171 0.06434

66: Patient rTP 0.8278 0.5661 0.05902

67: Patient rTT 0.8771 0.5938 0.06191

68: Patient rINS 0.8708 0.7015 0.07314

We can also plot the regional contribution for the group using the plot method (not shown, as it is almost

the same as Figure 14.5).

plot(RC.aop)

14.3.2 Leave one out

With this method, a comparison is made between the correlation matrix of the entire group, and a correlation
matrix of the group excluding a single subject. Function use is simple:

IC.loo <- loo(resids, corrs)

RC.loo <- loo(resids, corrs, 'regional')

summary(IC.loo)

##

Individual contributions

Method: Leave one out

Level: global

##

"Outliers"

Group Study.ID IC

1: Control 131 0.015283

2: Control 103 0.012979

3: Control 4 0.011464

4: Patient 108 0.014513

5: Patient 47 0.009209

We can also plot the regional contribution for the groups using the plot method (see Figure 14.5):

plot(RC.loo)

And a plot of the individual contributions is shown in Figure 14.6.

plot(IC.loo)

14.3.3 Plot types

When plotting data for regional contributions, you can now subset by region. Furthermore, you can choose
from 3 plot types:

mean The default, which plots a shaded area of values within 2 standard errors of the mean

smooth Plot the result of applying a loess smoother to the data. This is much less useful, particularly
when plotting a large number of regions

boxplot Plot the data as boxplots. This will also be a very “busy” plot if there are a lot of regions.

14.3 Individual contributions 123

0.5

0.7

0.9

1.1

lB
STS

lcA
CC

lcM
FG
lC

UN
lE

NT
lF

US
lIP

L
lIT

G
liC

C
lLO

G
lLO

F
lLI

NG
lM

OF
lM

TG
lPA

RH

lpa
ra

C

lpO
PER

lpO
RB
lpT

RI

lpe
riC

AL

lpo
stC
lP

CC
lpr

eC
lP

CUN

lrA
CC
lrM

FG
lS

FG
lS

PL
lS

TG
lS

M
AR
lF

P
lT

P lT
T
lIN

S
rB

STS

rc
ACC

rc
M

FG
rC

UN
rE

NT
rF

US
rIP

L
rIT

G
riC

C
rL

OG
rL

OF
rL

IN
G
rM

OF
rM

TG
rP

ARH

rp
ar

aC

rp
OPER

rp
ORB

rp
TRI

rp
er

iC
AL

rp
os

tC
rP

CC
rp

re
C

rP
CUN

rrA
CC

rrM
FG
rS

FG
rS

PL
rS

TG
rS

M
AR
rF

P
rT

P
rT

T
rIN

S

Region

R
eg

io
na

l c
on

tr
ib

ut
io

n

Group Control Patient

Regional contributions, leave one out method

Figure 14.5: Regional contribution; leave-one-out

124 Chapter 14: Further analysis

103

122

131

2

4

48

64

7

108

47

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

0.000

0.005

0.010

0.015

11010
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
1111

0
11

1
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
1212

0
12

1
12

2
12

3
12

4
12

5
12

6
12

7
12

8
12

9
1313

0
13

1
13

2
13

3
13

4
13

5
13

6
13

7
13

8
13

9
1414

0
14

1
1516171819220212223242526272829330313233343536373839440414243444546474849550515253545556575859660616263646566676869770717273747576777879880818283848586878889990919293949596979899

Subject

In
di

vi
du

al
 c

on
tr

ib
ut

io
n

Group a● aControl Patient

Individual contributions, leave one out method

Figure 14.6: Individual contribution; leave-one-out

Part VI

Visualization

Chapter 15: GUI and other plotting functionality . 126

125

15

GUI and other plotting functionality

15.1 The GUI

The purpose of the brainGraph GUI is to quickly and flexibly compare graphs (up to two at a time). The
function to open it is plot brainGraph gui. See Figure 15.1 for a screenshot.

The most obvious feature of the GUI is that there are 1–2 plotting sections for showing 1–2 graphs (of
subjects, groups, etc.) side-by-side. If you have a single graph you would like to inspect, you can enter the
same graph object twice to look at different densities, orientations, etc.

The # of vertices, # of edges, and the graph’s density are printed at the bottom of each figure window if
“Display subtitle” is checked. At the top of each figure window, the graph’s name attribute is printed (in
this case, group) if “Display main title” is checked.

15.1.1 Orientation

You can choose one of: axial, sagittal (L), sagittal (R), or circular. The sagittal plots necessarily show only
intra-hemispheric edges. If you choose circular, there is a slider widget beneath each plot that controls the
edge curvature.

15.1.2 Hemi/Edges

This option lets you show a subset of edges based on vertex classification/grouping. The default is to show
all edges. Other options are:

• Individual hemispheres

• Inter-hemispheric edges only

• Edges between homologous regions

• Inter- and intra-community edges

• Inter- and intra-lobar edges

• Inter- and intra-network edges; these refer to the network attribute for the power264 , gordon333 ,

and dosenbach160

• Inter- and intra-area edges; here, area is an attribute of the hcp mmp1.0 atlas

• Inter- and intra-Yeo 7 or Yeo 17 edges; this is only applicable for the brainnetome atlas

126

15.1 The GUI 127

15.1.3 Annotations

There are 4 checkboxes that can be (de-)selected to annotate the plot areas:

• Main title

• Subtitle

• Vertex labels

• Legend

There is also a “combo box” for changing vertex colors. The options are the same as those listed in the
previous sections, in addition to class (for the Destrieux atlases) and connected components. There is no
legend if vertex colors are based on communities or components. The numbers in the legend box represent
the # of vertices present out of the total # of vertices for that lobe/network/etc.

15.1.4 Vertex “decorations”

• Vertex labels: you can show or hide the labels. The label placement and text color isn’t very “smart”,
but I have attempted to code it such that labels won’t be placed on top of one another. Showing labels
would not be feasible for atlases with long vertex names (e.g., the Destrieux atlas).

• Vertex size: vertices will be scaled to reflect a number of vertex attributes (e.g., degree, betweenness
centrality, etc.). The dropdown menu lists them all. Unfortunately, the same scaling is used for most of
the vertex measures; the default I chose is to be between 0 and 15. Vertices with size larger than 15
(which is unitless) can end up “blocking” other vertices. For large graphs, it would be too cluttered to
be useful.

• There is also an entry for Other, which is useful if your graph has vertex attributes I haven’t hard-coded.
For example, if you have a P-value attribute for each vertex, you can type that in the Other entry.

• You can remove vertices with values below a certain minimum (see Min. 1 and Min. 2).

• Finally, there are text boxes for writing a simple logical equation. For example, to keep vertices with
degree above 10 AND Frontal lobe regions, you would write degree > 10 & lobe == ’Frontal’ .

15.1.5 Edge “decorations”

• Edge width: edge widths will be scaled to reflect edge betweenness, edge distance (Euclidean), or edge
weight (if the graph is weighted); there is also an entry for Other (as with vertices) for a custom edge
attribute.

• You can specify both minimum and maximum values, below/above which all edges will be removed.
These values can be different for the two displayed graphs.

• Edge color is tied to vertex color; edges are colored gray if they are connecting vertices with different
memberships (community, lobe, etc.).

15.1.6 Vertex groups

Under the Plot menu item, you can choose to plot based on combinations of vertex groups. Most of these
options are the same as those for Hemi/edges above. For example, if you want to see the Frontal and Parietal
lobes only, you would choose “Entire graph” and select the lobes at the bottom. To select multiple lobes, you
can press ctrl and click, or hold shift and use the arrow keys.
If you choose “Neighborhood graph”, you can plot the neighborhoods of combinations of vertices. An example
screenshot is in Figure 15.2; in this case, I am looking at the union of neighborhoods of 3 vertices. The main
title of the plot lists the vertex names, which are colored in yellow (default) for convenience.
Figure 15.3 shows an example when choosing the 2 largest (red is for the largest, green for the second-largest)
communities. The numbers in the scrolled window at the bottom are ordered from largest to smallest.
Figure 15.4 shows an example when viewing specific Yeo-17 networks.

128 Chapter 15: GUI and other plotting functionality

15.1.7 Keyboard shortcuts

There are a number of keyboard shortcuts available. Note that some shortcuts are accessed with the Ctrl key,
and others with the Alt key.

Alt+f Opens the File dropdown menu

Ctrl+o Select new graph objects (same as clicking
Pick new graphs)

Ctrl+1 Save figure 1 (left)

Ctrl+2 Save figure 2 (right)

Ctrl+q Exit (Quit) the GUI

Alt+p Opens the Plot dropdown menu

Ctrl+e Plot Entire graphs (optionally selecting
combinations of lobes)

Ctrl+n Plot Neighborhoods

Ctrl+c Plot Communities

Ctrl+f Plot Functional networks (i.e., the
network attribute)

Ctrl+a Plot Cortical Areas (hcp mmp1.0 only)

Ctrl+y Plot Yeo-7 networks (brainnetome

only)

Ctrl+7 Plot Yeo-17 networks (brainnetome

only)

Ctrl+g Plot Gyri (brainnetome only)

Alt+o Same as clicking Ok

Alt+n Same as clicking Pick new graphs

Alt+m Toggle the Display main title checkbox

Alt+s Toggle the Display subtitle checkbox

Alt+l Toggle the Display vertex labels checkbox

Alt+g Toggle the Show legend checkbox

Alt+d Toggle the Show diameter checkbox

Alt+e Toggle the Show edge differences checkbox

15.2 Other plotting

15.2.1 Adjacency matrix plots

It is very easy to plot the adjacency matrices using the plot method for objects of type corr mats . I

haven’t found these to be particularly useful, except when viewing the vertices in a specific order (e.g., by
community membership). By default, vertices will be ordered by lobe. You can also plot the raw correlation
(adjacency) matrices by passing type=’raw’ in the function call. Figures 15.5 and 15.6 show them clustered

into communities, and Figures 15.7 and 15.8 show them clustered into lobes (zoom in to read the axis labels).

matplot.comm <- plot(corrs, thresh.num=10, order.by='comm', graphs=g[[10]], grp.names='')

matplot.lobe <- plot(corrs, thresh.num=10)

To plot both in the same device, uncomment the following line

#grid.arrange(grobs=matplot.comm, ncol=2)

print(matplot.comm[[1]])

print(matplot.comm[[2]])

print(matplot.lobe[[1]])

print(matplot.lobe[[2]])

15.2 Other plotting 129

15.2.2 Plot global graph measures

Global graph measures can be plotted with plot global (see Figure 15.9). There are several options to
control the output. You can include a dashed vertical line at a density/threshold of interest (e.g., if your
main analysis focuses on one density, but you want to report results for multiple in a compact way). You can
also include data from a permutation analysis (i.e., brainGraph permute) to add asterisks for significance.
Currently, it will only plot red asterisks for P < 0.05 and blue for 0.05 ≤ P < 0.10. You also need to
provide a character vector of the alternative hypotheses in the order of the columns of the permutation data
table (excluding density). Finally, there is an option to change the facet label names (e.g., from Cp to
Clustering coeff.).

mod, Cp, Lp, assortativity, E.global, assortativity.lobe, asymm

alt <- c('less', 'two.sided', 'less', 'less', 'two.sided', 'less', 'less')

print(plot_global(g, vline=densities[N], exclude='assort.lobe.hemi',

perms=perms.all, alt=alt))

15.2.3 Save a three-panel plot of the brain graphs

The function plot brainGraph multi will save a PNG file of the left sagittal, axial, and right sagittal views
for one or more groups. I recommend this only for group-level graphs, or for subject-level graphs with a
small number of subjects (up to ≈ 5). You have the option of specifying conditions for subsetting the graphs
(via the subgraph argument): you can specify a single condition to be applied to all graphs, or multiple

conditions. If you would like to have a single graph and multiple conditions in the same figure, then “repeat”
the graph in the input list (see Examples on the function’s help page). An example is shown in Figure 15.10.
To control the size of the panel titles, supply the argument cex.main ; values greater than 1 will increase
the size. All other arguments accepted by plot.brainGraph can be used here.

plot_brainGraph_multi(g, subgraph='coreness > 5', filename='kcore5.png',

main='k-core 5', vertex.color='color.lobe', edge.color='color.lobe')

15.2.4 Save a single view for multiple brain graphs

The function slicer (similar to the FSL program of the same name) will save a PNG file of a single view

(axial, sagittal) for multiple graphs. For example, you can quickly plot for all subjects in a brainGraphList

object. The same function arguments to the plot.brainGraph method apply here. Additionally, you

must supply one (or both) of the nrows and/or ncols argument(s).

An example is shown in Figure 15.11.

slicer(g.glm[1:15, g=1, drop=FALSE], nrows=3, filename='slicerExample.png',

vertex.color='color.comm.wt', edge.color='color.comm.wt',

vertex.label=NA, subtitle=NULL)

15.2.5 Plot vertex-level measures

You can use the function plot vertex measures to plot a series of boxplots for a single vertex-level measure

(e.g., betweenness centrality), grouped by lobe (the default), network (in the dosenbach160 atlas), hemi, etc.
This requires having a “long” dataset (see Long and wide data tables). An example is shown in Figure 15.12.

plot_vertex_measures(g[[N]], facet.by='lobe',

'btwn.cent', show.points=TRUE,

ylabel='Betweenness centrality')

130 Chapter 15: GUI and other plotting functionality

15.2.6 Plot group-wise volumetric data for ROI’s

It is very easy to plot group-wise volumetric data either in the form of histograms or violin plots. The
function plot volumetric will do this.You may also choose an integer vector as the second argument; in
that case, the regions with those indices will be determined by the ordering in the input. You can choose as
many regions at a time as you like, but more than 9 at a time might get cluttered.

15.2.7 Save a list of graph plots

The plot method for brainGraphList objects will save a series of graph plots to a multi-page PDF

file. This could be a quick way to “scroll” through all of the graphs at a given threshold/density to check for
potential outliers/issues.1 There is an option to highlight edge differences between subsequent graphs, and to
color the vertices (either all the same color (default), or by lobe/community membership). You may also pass
arguments that will go to plot.brainGraph, such as vertex.label=NA to omit vertex labels. The basic
command is:

plot(g[[1]], filename.base='group1_dk', diffs=TRUE)

There is also an option to view only a subgraph of vertices. The subgraph argument accepts logical

expressions joined by & and/or by | for multiple conditions. For example, if you only want to plot vertices
with degree greater than 10 and nodal efficiency greater than 0.5, you type:

plot(g[[1]], 'group1', subgraph='degree > 10 & E.nodal > 0.5')

After this, you can convert this series of PNG ’s to either a GIF or to a video file. Converting to a GIF is
done using ImageMagick, a powerful command-line utility for general image processing. You may then view
the GIF in any image viewer, or, on Linux, gifview lets you step through each frame. Converting to a video
will require a tool called ffmpeg (available on Linux).

Convert to gif

The delay argument means show each frame for 0.5 seconds (i.e. 50/100)

convert -delay 50 -loop 0 group1.pdf animation.gif

Each frame will be displayed for 0.5 seconds

#TODO: not sure if this would work for a single PDF

ffmpeg -framerate 2 -i group1_dk_%03d.png -c:v libx264 -r 30 \

-pix_fmt yuv420p out.mp4

15.2.8 Other visualization tools

There are, of course, other visualization tools that are certainly more polished than this one. igraph can
write graph objects that will work for several, e.g., Pajek. For a brain-specific tool, write brainnet will
save the .node and .edge files necessary for visualization with BrainNet Viewer (130). You can choose to
color vertices by community, lobe, or connected component membership (or any other grouping/classification,
provided it is a vertex attribute). You can scale vertex size by any vertex attribute the graph contains
(e.g., degree, betweenness centrality, etc.). Finally, you can choose an edge attribute to write out a weighted
adjacency matrix (e.g., t.stat from the NBS function). This tool requires Matlab, and while it is relatively
slow, produces great figures.

write_brainnet(g[[1]][[N]], vcolor='comm', vsize='degree',

edge.wt='t.stat', file.prefix='group1')

1I plan on including some sort of outlier detection in the future.

http://mrvar.fdv.uni-lj.si/pajek/

15.2 Other plotting 131

Figure 15.1: The brainGraph plotting GUI.

132 Chapter 15: GUI and other plotting functionality

Figure 15.2: The brainGraph plotting GUI; neighborhoods.

15.2 Other plotting 133

Figure 15.3: The brainGraph plotting GUI; communities.

134 Chapter 15: GUI and other plotting functionality

Figure 15.4: The brainGraph plotting GUI; Yeo-17 networks.

15.2 Other plotting 135

rperiCAL
lrACC
lPCC

lPARH
liCC

lcACC
rTT

riCC
rSMAR

rSPL
rPCUN
rpostC
rLING
rLOG

rIPL
rCUN

lSMAR
lSPL

lPCUN
lpostC
lparaC
lLING
lLOG

lIPL
lCUN

rFP
rSFG

rrMFG
rrACC
rpreC
rPCC

rpORB
rparaC
rMOF
rLOF

rcACC
lTP
lFP

lSFG
lrMFG

lperiCAL
lpTRI

lpORB
lMOF
lLOF
rINS
rTP

rSTG
rpTRI

rpOPER
rPARH
rMTG
rITG

rFUS
rENT

rcMFG
rBSTS

lINS
lTT

lSTG
lpreC

lpOPER
lMTG
lITG

lFUS
lENT

lcMFG
lBSTS

lBSTS
lcM

FG
lENT

lFUS
lIT

G
lM

TG
lpOPER

lpreC
lSTG

lTT
lIN

S
rB

STS

rcM
FG
rE

NT
rF

US
rIT

G
rM

TG
rPARH

rp
OPER

rp
TRI
rS

TG
rT

P
rIN

S
lLOF

lM
OF
lpORB

lpTRI

lperiC
AL

lrM
FG
lSFG

lFPlTP
rcA

CC
rLOF

rM
OF
rp

araC

rp
ORB
rP

CC
rp

reC
rrA

CC
rrM

FG
rS

FG
rF

P
lC

UN
lIP

L
lLOG

lLIN
G

lparaC
lpostC

lPCUN
lSPL

lSMAR
rC

UN
rIP

L
rLOG

rLIN
G

rp
ostC

rP
CUN

rS
PL
rS

MAR
riC

C
rT

T
lcA

CC
liC

C
lPARH

lPCC
lrA

CC

rp
eriC

AL

Community (#)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Inter

Control

Figure 15.5: Adjacency matrix, group 1.

136 Chapter 15: GUI and other plotting functionality

rrACC
riCC

rBSTS
liCC

rPARH
lPARH
lrACC
lcACC
rPCC

rcACC
lPCC

rperiCAL
rLOG
rCUN

lTT
lperiCAL

lLING
lLOG
lCUN

rFP
rrMFG
rpTRI

rpORB
rMOF
rLOF

lFP
lSFG

lrMFG
lpTRI

lpORB
lpOPER

lMOF
lLOF

lcMFG
rSMAR

rSPL
rSFG

rPCUN
rpreC

rpostC
rparaC
rLING

rIPL
rcMFG
lSMAR

lSPL
lPCUN

lpreC
lpostC
lparaC

lIPL
rINS
rTT
rTP

rSTG
rpOPER

rMTG
rITG

rFUS
rENT
lINS
lTP

lSTG
lMTG
lITG

lFUS
lENT

lBSTS

lBSTS
lENT

lFUS
lIT

G
lM

TG
lSTG

lTP
lIN

S
rE

NT
rF

US
rIT

G
rM

TG

rp
OPER

rS
TG
rT

P
rT

T
rIN

S
lIP

L
lparaC

lpostC
lpreC

lPCUN
lSPL

lSMAR

rcM
FG
rIP

L
rLIN

G
rp

araC

rp
ostC
rp

reC
rP

CUN
rS

FG
rS

PL
rS

MAR

lcM
FG
lLOF

lM
OF

lpOPER

lpORB
lpTRI

lrM
FG
lSFG

lFP
rLOF

rM
OF
rp

ORB
rp

TRI

rrM
FG
rF

P
lC

UN
lLOG

lLIN
G

lperiC
AL
lTT

rC
UN
rLOG

rp
eriC

AL

lPCC
rcA

CC
rP

CC
lcA

CC
lrA

CC
lPARH

rPARH
liC

C
rB

STS
riC

C
rrA

CC

Community (#)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Inter

Patient

Figure 15.6: Adjacency matrix, group 2.

15.2 Other plotting 137

rrACC
rPCC
riCC

rcACC
lrACC
lPCC
liCC

lcACC
rINS
lINS

rperiCAL
rLING
rLOG
rCUN

lperiCAL
lLING
lLOG
lCUN

rTT
rTP

rSTG
rPARH
rMTG
rITG

rFUS
rENT

rBSTS
lTT
lTP

lSTG
lPARH
lMTG
lITG

lFUS
lENT

lBSTS
rSMAR

rSPL
rPCUN
rpostC

rIPL
lSMAR

lSPL
lPCUN
lpostC

lIPL
rFP

rSFG
rrMFG
rpreC
rpTRI

rpORB
rpOPER

rparaC
rMOF
rLOF

rcMFG
lFP

lSFG
lrMFG
lpreC
lpTRI

lpORB
lpOPER

lparaC
lMOF
lLOF

lcMFG

lcM
FG
lLOF

lM
OF
lparaC

lpOPER

lpORB
lpTRI

lpreC
lrM

FG
lSFG

lFP
rcM

FG
rLOF

rM
OF
rp

araC

rp
OPER

rp
ORB
rp

TRI
rp

reC
rrM

FG
rS

FG
rF

P
lIP

L
lpostC

lPCUN
lSPL

lSMAR
rIP

L
rp

ostC

rP
CUN

rS
PL
rS

MAR

lBSTS
lENT

lFUS
lIT

G
lM

TG
lPARH

lSTG
lTPlTT

rB
STS
rE

NT
rF

US
rIT

G
rM

TG
rPARH

rS
TG
rT

P
rT

T
lC

UN
lLOG

lLIN
G

lperiC
AL

rC
UN
rLOG

rLIN
G

rp
eriC

AL

lIN
S
rIN

S
lcA

CC
liC

C
lPCC

lrA
CC
rcA

CC
riC

C
rP

CC
rrA

CC

Lobe

Frontal

Parietal

Temporal

Occipital

Insula

Cingulate

Inter

Control

Figure 15.7: Adjacency matrix, group 1.

138 Chapter 15: GUI and other plotting functionality

rrACC
rPCC
riCC

rcACC
lrACC
lPCC
liCC

lcACC
rINS
lINS

rperiCAL
rLING
rLOG
rCUN

lperiCAL
lLING
lLOG
lCUN

rTT
rTP

rSTG
rPARH
rMTG
rITG

rFUS
rENT

rBSTS
lTT
lTP

lSTG
lPARH
lMTG
lITG

lFUS
lENT

lBSTS
rSMAR

rSPL
rPCUN
rpostC

rIPL
lSMAR

lSPL
lPCUN
lpostC

lIPL
rFP

rSFG
rrMFG
rpreC
rpTRI

rpORB
rpOPER

rparaC
rMOF
rLOF

rcMFG
lFP

lSFG
lrMFG
lpreC
lpTRI

lpORB
lpOPER

lparaC
lMOF
lLOF

lcMFG

lcM
FG
lLOF

lM
OF
lparaC

lpOPER

lpORB
lpTRI

lpreC
lrM

FG
lSFG

lFP
rcM

FG
rLOF

rM
OF
rp

araC

rp
OPER

rp
ORB
rp

TRI
rp

reC
rrM

FG
rS

FG
rF

P
lIP

L
lpostC

lPCUN
lSPL

lSMAR
rIP

L
rp

ostC

rP
CUN

rS
PL
rS

MAR

lBSTS
lENT

lFUS
lIT

G
lM

TG
lPARH

lSTG
lTPlTT

rB
STS
rE

NT
rF

US
rIT

G
rM

TG
rPARH

rS
TG
rT

P
rT

T
lC

UN
lLOG

lLIN
G

lperiC
AL

rC
UN
rLOG

rLIN
G

rp
eriC

AL

lIN
S
rIN

S
lcA

CC
liC

C
lPCC

lrA
CC
rcA

CC
riC

C
rP

CC
rrA

CC

Lobe

Frontal

Parietal

Temporal

Occipital

Insula

Cingulate

Inter

Patient

Figure 15.8: Adjacency matrix, group 2.

15.2 Other plotting 139

* * * ** * * *

of hubs Local eff. Vulnerability

of hubs (wt) assortativity.lobe assortativity.lobe.hemi Asymmetry index Edge distance

Modularity (wt) Local eff. (wt) Global eff. (wt) Diameter (wt) Char. path length (wt)

of triangles Diameter Transitivity assortativity Strength

Clustering coeff. Char. path length Global eff. Modularity Max. conn. comp.

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

40

50

60

4
6
8

10
12

2.0

2.5

3.0

3.5

55
60
65
70
75

0.3

0.4

0.5

0.05
0.10
0.15
0.20
0.25

5
6
7
8
9

10

−0.6
−0.5
−0.4
−0.3
−0.2

0.2

0.3

0.4

0.5

0.44

0.48

0.52

0.2

0.3

0.4

0.5

0.15

0.20

0.25

0.0

0.1

0.2

0.3

2.0

2.5

3.0

3.5

5
6
7
8
9

10

0.60

0.65

0.70

0.75

0.80

0.3

0.4

0.5

0.6

0.4

0.5

0.6

0.7

0.48

0.52

0.56

0.60

0

500

1000

1500

0.3

0.4

0.5

16

18

20

16

18

20

density

va
lu

e

Group Control Patient

Figure 15.9: Global graph measures vs. density

140 Chapter 15: GUI and other plotting functionality

Figure 15.10: Vertices for which “coreness” is greater than 5.

15.2 Other plotting 141

Figure 15.11: Axial views for 15 control subjects using slicer.

142 Chapter 15: GUI and other plotting functionality

● ●●●● ●● ● ●●●

●

●●
●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

Occipital Parietal Temporal

Cingulate Frontal Insula

Control Patient Control Patient Control Patient

50

100

0

50

100

150

200

250

0

100

200

300

0

50

100

0

20

40

0

100

200

300

Group

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

Figure 15.12: Vertex-level graph measures by lobe.

A

Attributes created by set brainGraph attr

A.1 Graph-level

A.1.1 Housekeeping

Some attributes are included only for “housekeeping” purposes. Most are optional, but I suggest supplying
them.

version The version of brainGraph that was used to create the graph

atlas The atlas (e.g., dk for Desikan-Killiany)

clust.method The clustering (community detection) algorithm used

clust.method.wt Same as above, but using edge weights (if the graph is weighted). This is not necessarily
different from the unweighted value.

Group The subject/patient group name

name The subject/study ID of the subject

modality The imaging modality

weighting The edge weighting. For example, fa (for FA-weighted matrices from tractography), or
partial (for partial correlation coefficients).

threshold The threshold applied to the raw connectivity matrices.

xfm.type The method used to transform edge weights for distance-based metrics (if the graph is
weighted)

A.1.2 Unweighted

Cp The graph’s clustering coefficient (using the localaverage option)

Lp Characteristic path length

rich A data.table of the rich-club coefficients and subgraph sizes

E.global The global efficiency

E.local The mean local efficiency across vertices

mod Modularity, calculated using the algorithm specified by clust.method

density

143

144 Chapter A: Attributes created by set brainGraph attr

conn.comp A data.frame of the sizes of connected components present in the graph

max.comp The size of the largest connected component

num.tri The number of triangles in the graph

diameter

transitivity

assort Degree assortativity

assort.lobe Assortativity calculated using lobe membership

assort.lobe.hemi Assortativity calculated using lobe and hemi membership

assort.class Assortativity calculated using class membership (if the atlas is destrieux)

assort.network Assortativity calculated using network membership (if atlas is dosenbach160)

asymm Edge asymmetry

spatial.dist Mean of all (Euclidean) edge distances

vulnerability The maximum vulnerability across vertices

num.hubs The number of hubs (vertices with hubness score ≥ 2)

A.1.3 Weighted

strength Average vertex strength

rich.wt A data.frame of the weighted rich-club coefficients and subgraph sizes

mod.wt Modularity, calculated using the algorithm specified by clust.method and taking into
account edge weights

E.local.wt The average of the vertices’ weighted local efficiency

E.global.wt The weighted global efficiency

diameter.wt The graph’s diameter, taking into account edge weights

Lp.wt The weighted characteristic path length, which is the mean of the vertices’ average path
lengths

num.hubs.wt The number of hubs, determined using edge weights to calculate path lengths, clustering
coefficients, and vertex strength

A.2 Vertex-level

A.2.1 Housekeeping/Other

name The name of the brain region

lobe Lobe membership (e.g., Frontal)

hemi Hemisphere; either L, R, or B (for “both”)

lobe.hemi Integer vector corresponding to a combination of the lobe and hemi attributes

A.2 Vertex-level 145

class The “class”, if the atlas is destrieux. Either G (gyral), S (sulcal), or G and S (both)

network The “network”, if the atlas is dosenbach160

x,y,z The spatial coordinates

x.mni,y.mni,z.mni (same as above)

color.lobe The colors corresponding to lobe membership

color.class The colors corresponding to class membership (if the atlas is destrieux)

color.network The colors corresponding to network membership (if the atlas is dosenbach160)

color.comm Colors corresponding to community membership

color.comm.wt The colors corresponding to weighted community membership

color.comp Colors corresponding to component membership

A.2.2 Unweighted

degree

asymm Edge asymmetry

dist The mean (Euclidean) edge distance of each vertex’s connections

dist.strength Vertices’ dist multiplied by the degree

knn Average nearest neighbor degree

Lp The vertices’ average shortest path lengths

btwn.cent Betweenness centrality

ev.cent Eigenvector centrality

lev.cent Leverage centrality

hubs “Hubness” scores (calculated by hubness)

k.core k-core membership

transitivity Transitivity

E.local Local efficiency

E.nodal Nodal efficiency

vulnerability

eccentricity The “longest shortest path length”; i.e., the maximum of shortest path lengths from a
vertex to all other vertices

comm Integer vector of the vertices’ community membership (from largest to smallest)

comp Integer vector of the vertices’ connected component membership (from largest to
smallest)

GC Gateway coefficient

PC Participation coefficient

z.score Within-module degree z-score

146 Chapter A: Attributes created by set brainGraph attr

A.2.3 Weighted

strength

knn.wt Average nearest neighbor strength

s.core s-core membership

comm.wt Integer vector of the vertices’ (weighted) community membership (from largest to
smallest)

GC.wt The weighted version of the gateway coefficient (using comm.wt)

PC.wt The weighted version of the participation coefficient (using comm.wt)

z.score.wt The weighted version of the within-module degree z-score (using comm.wt)

transitivity.wt Weighted transitivity

E.local.wt Weighted local efficiency

E.nodal.wt Weighted nodal efficiency

Lp.wt The vertices’ average shortest path lengths, taking into account edge weights

hubs.wt “Hubness” scores using edge weights

A.3 Edge-level

weight Edge weight

dist The Euclidean distance of the edge

btwn Edge betweenness

color.lobe The colors corresponding to lobe membership

color.class The colors corresponding to class membership (if the atlas is destrieux)

color.network The colors corresponding to network membership (if the atlas is dosenbach160)

color.comm The colors corresponding to community membership

color.comm.wt The colors corresponding to weighted community membership

color.comp The colors corresponding to component membership

B

GLM Statistics

! New in v3.0.0

All of these functions/methods are new in v3.0.0.

B.1 Model fitting

There are several new model fitting functions that are much faster than other solutions (see Benchmarks).
There are multiple default function arguments that greatly improve speed in various scenarios; this is most
helpful when permuting and fitting the data.

Note

Only the first 2 of the following should be used directly.

fastLmBG Requires a design matrix X and numeric matrix of outcome variables Y. The outcome
matrix should have 1 column for each outcome variable.

fastLmBG 3d Fits models when there are multiple design matrices, so X will be a 3-D array, and
a single outcome variable, so Y will be a column matrix. The array X must have
dimension names, and the input argument runX specifies the regions for which a
model should be fit.

fastLmBG 3dY Fits models when there is both a different design and outcome variable for each
region. This only occurs under permutation for the Freedman-Lane, ter Braak, and
Still-White methods.

fastLmBG 3dY 1p Fits models when there is both a different design and outcome for each region, and
also when X is a rank-1 matrix (i.e., has a single column). This only occurs under
permutation with the Still-White method if there is a single regressor of interest.

B.2 Contrast-based statistics

There are 2 functions for calculating contrast-based statistics for F- and t-contrasts, respectively. Both require
a list object that is returned from one of the model fitting functions (see previous section) as well as a list of
contrast matrices (F-contrasts) or a single matrix (t-contrasts).

147

148 Chapter B: GLM Statistics

fastLmBG t Returns a multidimensional array with the contrast of parameter estimates, standard error
of the contrast, t-statistics, P-values, FDR-adjusted P-values, and confidence intervals

fastLmBG f Returns a multidimensional array with the extra sum of squares, standard error (the sum of
squared errors of the full model), F-statistic, P-values, and FDR-adjusted P-values

Details for the statistics calculated by these functions are as follows.

Gamma (if con.type=’t’) The contrast of parameter estimates:

γ̂ = CT β̂

This is equivalent to the cope? images from FSL, the con_???? images from SPM, and
gamma.mgh from Freesurfer.

ESS (if con.type=’f’) The extra sum of squares due to the full model, compared to the

reduced model. This is specific to the contrast matrix, and is equivalent to the ess_????
images from SPM.

Standard error (if con.type=’t’) The standard error of the contrast, SE, is

SE =
√
CΣCT

where Σ, the variance-covariance matrix, is calculated as

Σ = s2XTX

Standard error (if con.type=’f’) The sum of squared errors (or residual sum of sqares) of the full

model. This is, for residuals ê,

RSS = êT ê

stat The t-statistic for the contrast of interest is

T =
γ̂

SE

The F-statistic is

F =
ESS/rank(C)

RSS/df

where rank(C) is the rank of the contrast matrix and df equals the residual degrees of
freedom

CI (if con.type=’t’) The lower and upper confidence limits:

γ̂ ± tα/2,df × SE

B.3 GLM methods

There are now a few dozen methods for bg GLM objects, many of which are meant to mimic methods of lm
objects. All the methods for this class can be viewed with

methods(class='bg_GLM')

B.3 GLM methods 149

[1] [anova case.names

[4] coef confint cooks.distance

[7] deviance df.residual dfbeta

[10] dfbetas extractAIC fitted

[13] formula hatvalues influence

[16] labels logLik make_brainGraphList

[19] nobs nregions plot

[22] print region.names residuals

[25] rstandard rstudent sigma

[28] summary terms variable.names

[31] vcov

see '?methods' for accessing help and source code

The next few sections will list and describe these based on a few categories.

B.3.1 Basic information

Several of the methods just give basic information about the data/model. See help(’GLM basic info’)

for details.

nobs The number of observations

terms Returns a list for each variable in the design matrix; it maps the variables to columns of
the design matrix. Factor variables will be mapped to multiple columns.

labels The names of the terms list

formula The model formula (sometimes called “Wilkinson-Rogers notation”)

case.names Character vector of the case names, which are typically subject IDs

variable.names Character vector of the design matrix column names

region.names Character vector of region names

nregions The number of regions

formula(anova2x3)

[1] "E.nodal.wt ~ A * B"

terms(anova2x3)

$Intercept

[1] 1

##

$A

[1] 2

##

$B

[1] 3 4

##

$`A:B`

[1] 5 6

variable.names(anova2x3)

[1] "Intercept" "A2" "B2" "B3" "A2:B2" "A2:B3"

150 Chapter B: GLM Statistics

B.3.2 Model fit statistics

These functions return basic model fit statistics. See help(’GLM statistics’) for details.

In the following list, n is the number of observations, p is the rank of the design matrix, and r is the number
of regions.

coef A p× r matrix of model coefficients (parameter estimates)

confint A p× 2× r array of the confidence intervals of parameter estimates

fitted A n× r matrix of fitted values

residuals A n× r matrix of residuals. You can calculate “regular” or partial residuals.

deviance A vector of model deviance for each region. Also known as the residual sum of squares.

df.residual Residual degrees of freedom

sigma A vector of residual standard deviation for each region; sometimes called root mean squared
error (RMSE)

vcov A p× p× r array of variance-covariance matrices of model parameters

anova Performs “Type III” ANOVA tests, in addition to calculating several other statistics of
interest. See the example in the following code block.

coeff determ A vector of the coefficient of determination, or R2 for each region

coeff table Recreates the coefficients table that is calculated by summary.lm

coeff_table(diffs.perm)[, , 'lcACC']

Estimate Std. Error t value Pr(>|t|)

Intercept 0.0363158 0.0027050 13.425 1.527e-27

Age.MRI 0.0003536 0.0001667 2.122 3.551e-02

Sex -0.0013172 0.0009532 -1.382 1.690e-01

Scanner 0.0054788 0.0009674 5.664 7.269e-08

GroupPatient -0.0007924 0.0005403 -1.467 1.445e-01

anova(diffs.perm)[[1]]

Anova Table (Type III tests)

##

Response: E.nodal.wt

Sum Sq Mean Sq Df F value eta^2 Partial eta^2 omega^2

Intercept 0.00619 0.00619 1 180.24 0.485 0.544 0.481

Age.MRI 0.00015 0.00015 1 4.50 0.012 0.029 0.009

Sex 0.00007 0.00007 1 1.91 0.005 0.012 0.002

Scanner 0.00110 0.00110 1 32.08 0.086 0.175 0.083

Group 0.00007 0.00007 1 2.15 0.006 0.014 0.003

Residuals 0.00518 0.00003 151

Partial omega^2 Pr(>F)

Intercept 0.535 < 2e-16 ***

Age.MRI 0.022 0.036 *

Sex 0.006 0.169

Scanner 0.166 7.3e-08 ***

Group 0.007 0.145

Residuals

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

B.3 GLM methods 151

B.3.3 Diagnostic/Influence measures

These functions return “leave-one-out” diagnostics, also called influence measures. These are important in
determining outlier observations. See ?influence.bg GLM for more details.

Most of the following return a n× r matrix of values. dfbeta and dfbetas return a n× p× r array.

influence Calculates all influence measures detailed below, and identifies outliers based on
pre-set values.

rstandard Standard residuals

rstudent Studentized residuals

hatvalues The leverage (diagonal of the hat/projection matrix

cooks.distance Cook’s distance

dffits.bg GLM The change in fitted values when deleting observations

dfbeta The change in parameter estimates when deleting observations

dfbetas The scaled change in parameter estimates

covratio.bg GLM The covariance ratios; the change in the determinant of the covariance matrix of
parameter estimates when deleting observations

str(influence(diffs.perm))

List of 5

$ infmat: num [1:156, 1:9, 1:76] -0.0163 0.087 -0.1074 -0.0286 -0.0631 ...

..- attr(*, "dimnames")=List of 3

.. ..$: chr [1:156] "02-001-4" "02-003-2" "02-006-8" "02-008-7" ...

.. ..$: chr [1:9] "dfb.Intercept" "dfb.Age.MRI" "dfb.Sex" "dfb.Scanner" ...

.. ..$: chr [1:76] "lcACC" "lcMFG" "lCUN" "lENT" ...

$ is.inf: logi [1:156, 1:9, 1:76] FALSE FALSE FALSE FALSE FALSE FALSE ...

..- attr(*, "dimnames")=List of 3

.. ..$: chr [1:156] "02-001-4" "02-003-2" "02-006-8" "02-008-7" ...

.. ..$: chr [1:9] "dfb.Intercept" "dfb.Age.MRI" "dfb.Sex" "dfb.Scanner" ...

.. ..$: chr [1:76] "lcACC" "lcMFG" "lCUN" "lENT" ...

$ f : chr "E.nodal.wt ~ Age.MRI + Sex + Scanner + Group"

$ sigma : num [1:156, 1:76] 0.00588 0.00585 0.00584 0.00587 0.00584 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:156] "02-001-4" "02-003-2" "02-006-8" "02-008-7" ...

.. ..$: chr [1:76] "lcACC" "lcMFG" "lCUN" "lENT" ...

$ wt.res: num [1:156, 1:76] 0.00142 -0.00654 0.008 0.00353 0.00795 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:156] "02-001-4" "02-003-2" "02-006-8" "02-008-7" ...

.. ..$: chr [1:76] "lcACC" "lcMFG" "lCUN" "lENT" ...

- attr(*, "class")= chr [1:2] "infl.bg_GLM" "list"

B.3.4 Other statistics

These functions return other statistics.

vif.bg GLM Returns a (p− 1)× 3× r array of variance inflation factors

logLik Log-likelihood

152 Chapter B: GLM Statistics

extractAIC Akaike’s An Information Criterion (AIC)

AIC Essentially the same as above

BIC Bayesian Information Criterion

C

Functions for generic data

Although brainGraph has been developed specifically for brain MRI data, there are several functions that
will work on generic (non-brain) data. These are functions that do not make use of graph attributes such as
atlas, lobe, hemisphere, spatial coordinates, etc. Some functions require an attribute that, while not specific
to brain MRI data, do need to be added by the user; these will be marked clearly in the following list.

• fastLmBG and the other model fitting functions (see GLM Statistics)

• Matrix utilities: colMax, colMaxAbs, colMin; diag sq (simplified version of diag); is binary;
symmetrize; inv and pinv (methods for calculating matrix inverses; see ?inv)

• Functions requiring a brainGraphList object will need at least a “dummy” atlas argument, and the
gnames should match the Study.ID in the covars data table if applicable.

• brainGraph GLM and its related functions (needs name graph attribute that matches the Study.ID
column in the input covars data table)

• brainGraph GLM design

• brainGraph mediate (same as GLM requirements)

• mtpc (same as GLM requirements)

• NBS (same as GLM requirements)

• centr lev

• centr betw comm

• communicability

• efficiency

• hubness

• make ego brainGraph

• make intersection brainGraph

• mean distance wt Calculates weighted graph or vertex average shortest path lengths

• partition Partition a design matrix based on a contrast of interest (for randomization/permutation)

• sim.rand.graph.clust

• Rich-club functions (although rich club norm will require Group and possibly Study.ID graph attributes
if you do not supply a list of random graphs)

153

154 Chapter C: Functions for generic data

• robustness

• s core

• small.world (observed and random graphs all need Cp and Lp graph attributes)

• gateway coeff, part coeff, within module deg z score

• vulnerability

D

Benchmarks

Most functions will run quickly on just about any machine, since igraph is based on C routines. Nevertheless,
here is some benchmarking information. The more CPU cores you have, the better.

The timing of the graph algorithms is extremely fast for “small” graphs (e.g., with any atlas-based brain
parcellation), and are generally going to take either O(n) or O(m) time, where n is the # of vertices, and m is
the # of edges. The longest processing times will be Random graph generation, Bootstrapping, Permutation
Testing, and Random Failure Analysis.

All testing was done on the same system:

System Information

64-bit CentOS 7.7.1908

Intel Core i7-6500U (4 cores @ 2.50 GHz)

R version 3.6.0 (2019-04-26)

D.1 GLM-related benchmarks

D.1.1 Randomise

Benchmarks for randomise are shown in Table D.1. The first section is when outcome=measure (the
default) and the second is for a different outcome (multiple design matrices). As expected, the latter case
takes longer to run.

Outcome Perm. method Old New Speedup

Same
Freedman-Lane 9.057 0.868 10.43x
Smith 3.886 1.006 3.86x

Different
Freedman-Lane 127.229 3.340 38.09x
Smith 117.811 12.001 9.82x

Table D.1: Runtimes (in seconds) for randomise. These are analyses with 2 contrasts and using the
dk.scgm atlas (82 vertices). The number of permutations for each run is 1,000. Where it says
Same, it is for analyses in which outcome=measure .

When Y is very large—for example, in a graph with a very large number of vertices and/or edges—fitting
a single model is still very fast. For example, it takes on the order of 0.15 seconds to fit a model where
Y is a 101× 64, 620 matrix (which is equal to the total number of edges possible with a 360 vertex graph,
like the HCP atlas). Furthermore, in these cases I recommend using one of the smith or draperStoneman

permutation methods as they are more efficient.

155

156 Chapter D: Benchmarks

D.1.2 NBS

Benchmarks for NBS are shown in Table D.2. This example used “raw” matrices with approximately 97%
density (3,225 edges). As you can see, for N = 5000 permutations, what previously would have taken more
than 10 minutes now takes 16 seconds.

permutations Old New Speedup

500 70.504 2.066 34.13x
1000 140.882 3.625 38.87x
2500 NA 7.645 NA
5000 740.503 16.472 44.96x

Table D.2: Runtimes (in seconds) for NBS. These analyses were in graphs with approx. 97% density (3,225
edges).

D.1.3 Mediation

Table D.3 lists runtime for brainGraph mediate with the dk.scgm atlas (82 vertices).

Level # of permutations Old New Speedup

Vertex
1,000 47.816 7.246 6.599x
5,000 159.831 35.959 4.445x

10,000 268.213 63.060 4.253x

Graph
1,000 0.536 0.564 0.95x
5,000 2.106 2.203 0.95x

10,000 3.665 3.868 0.95x

Table D.3: Runtimes for vertex- and graph-level mediation for graphs with 76 vertices. These
analyses were for 101 subjects in 3 groups. Runtimes are the median of 100 repetitions in seconds.

D.2 Random graph generation

For random graph generation, runtimes vary depending on whether or not the graph is connected, whether or
not you control for clustering, on the graph size (i.e., number of edges), and on the number of subjects/groups
(i.e., total number of graphs).

Note

These benchmarks were run on older R and igraph versions, so it’s possible these will be faster on a
similar system.

• The dk atlas (68 vertices) for cortical thickness covariance:

Random graph generation (control for clustering) For 1 group and 1 density (20%), generat-
ing 1,000 random graphs, total processing time was 5 min. 45 sec.. Compared to a runtime of 5
hr. 17 min. in the oldest version (which was on a machine with more and faster CPU cores), this is
approximately a 55x speed increase. (The processing time prior to v2.5.0 was about 10 minutes).

• The dkt atlas (62 vertices) for cortical thickness covariance:

D.2 Random graph generation 157

Random graph generation (control for clustering) For 2 groups and 44 densities (from 7-50%,
steps of 1%), and with 100 random graphs generated (per density per group) (i.e., 8,800 graphs), total
processing time was (estimated to be) 2 hr. 29 min.. The # of iterations per graph was limited to
100 (the default value for the max.iters argument to sim.rand.graph.clust; see Random graph
generation). Compared to a runtime of 18 hr. 33 min. in the older version (and on a machine with
more and faster CPU cores), this is a 7.5x speed increase.

• The dk.scgm atlas (82 vertices) for DTI tractography:

Random graph generation For 3 groups, 30 thresholds, and 104 subjects total, generating 100
random graphs for all combinations (i.e., 312,000 graphs) took 6 hr. 6 min.. Total disk space
used was 4.0 GB. The bulk of the increase in processing time was due to several of the thresholds
containing unconnected graphs; for the connected graphs, generating 100 random graphs for 36
subjects took between 0 min. 42 sec. – 1 min. 32 sec. per threshold.

Random graph generation For 3 groups and 30 thresholds, generating 1,000 random graphs for
all combinations (i.e., 90,000 graphs) took 2 hr. 29 min.. Total disk space used was 1.2 GB.

E

Computing environment

This document was typeset with LATEX (through the knitr package in R), using the book document class.
The main typeface is Computer Modern, designed by Donald Knuth for TEX. The bibliography was typeset
with BibTEX using the natbib package.

The following versions of R, the operating system, and R packages used include:

• R version 3.6.0 (2019-04-26), x86_64-redhat-linux-gnu

• Running under: CentOS Linux 7 (Core)

• Random number generation:

• RNG: Mersenne-Twister

• Normal: Inversion

• Sample: Rounding

• Matrix products: default

• BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: brainGraph 3.0.0, colorout 1.2-2, data.table 1.12.6, doMC 1.3.6, foreach 1.4.7,
ggplot2 3.2.1, gridExtra 2.3, igraph 1.2.4.1, iterators 1.0.12, knitr 1.25, microbenchmark 1.4-7,
nvimcom 0.9-83, pacman 0.5.1, permute 0.9-5, setwidth 1.0-4

• Loaded via a namespace (and not attached): abind 1.4-5, acepack 1.4.1, assertthat 0.2.1,
backports 1.1.5, base64enc 0.1-3, boot 1.3-23, checkmate 1.9.4, cluster 2.0.8, codetools 0.2-16,
colorspace 1.4-1, compiler 3.6.0, crayon 1.3.4, digest 0.6.22, doParallel 1.0.15, dplyr 0.8.3, evaluate 0.14,
foreign 0.8-71, Formula 1.2-3, ggrepel 0.8.1, glue 1.3.1, grid 3.6.0, gtable 0.3.0, highr 0.8, Hmisc 4.2-0,
htmlTable 1.13.2, htmltools 0.4.0, htmlwidgets 1.5.1, labeling 0.3, lattice 0.20-38, latticeExtra 0.6-28,
lazyeval 0.2.2, lme4 1.1-21, lpSolve 5.6.13.3, magrittr 1.5, MASS 7.3-51.4, Matrix 1.2-17,
mediation 4.5.0, minqa 1.2.4, munsell 0.5.0, mvtnorm 1.0-11, nlme 3.1-139, nloptr 1.2.1, nnet 7.3-12,
pillar 1.4.2, pkgconfig 2.0.3, purrr 0.3.3, R6 2.4.0, RColorBrewer 1.1-2, Rcpp 1.0.4, RcppEigen 0.3.3.5.0,
rlang 0.4.1, rpart 4.1-15, rstudioapi 0.10, sandwich 2.5-1, scales 1.0.0, splines 3.6.0, stringi 1.4.3,
stringr 1.4.0, survival 2.44-1.1, tibble 2.1.3, tidyselect 0.2.5, tools 3.6.0, withr 2.1.2, xfun 0.10, zoo 1.8-6

158

Bibliography

[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack tolerance of complex
networks. Nature, 406(6794):378–382, 2000. doi:10.1515/9781400841356.503.

[2] Marti Anderson and Cajo ter Braak. Permutation tests for multi-factorial analysis of variance. Journal
of Statistical Computation and Simulation, 73(2):85–113, 2003. doi:10.1080/00949650215733. URL
https://doi.org/10.1080/00949650215733.

[3] Corson N Areshenkoff, Joseph Y Nashed, R Matthew Hutchison, Melina Hutchison, Ron Levy, Douglas J
Cook, Ravi S Menon, Stefan Everling, and Jason P Gallivan. Muting, not fragmentation, of functional
brain networks under general anesthesia. bioRxiv, pages 1–24, 2020.

[4] Shweta Bansal, Shashank Khandelwal, and Lauren A Meyers. Exploring biological network structure
with clustered random networks. BMC Bioinformatics, 10(1):405, 2009. doi:10.1186/1471-2105-10-405.

[5] Gaetano Barbagallo, Maria Eugenia Caligiuri, Gennarina Arabia, Andrea Cherubini, Angela Lupo, Rita
Nisticò, Maria Salsone, Fabiana Novellino, Maurizio Morelli, Giuseppe Lucio Cascini, et al. Structural
connectivity differences in motor network between tremor-dominant and nontremor Parkinson’s disease.
Human Brain Mapping, 38(9):4716–4729, 2017. doi:10.1002/hbm.23697.

[6] Reuben M Baron and David A Kenny. The moderator–mediator variable distinction in social psycho-
logical research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social
Psychology, 51(6):1173, 1986. doi:10.1037/0022-3514.51.6.1173.

[7] Christian F Beckmann, Mark Jenkinson, and Stephen M Smith. General multilevel linear modeling for
group analysis in FMRI. NeuroImage, 20(2):1052–1063, 2003.

[8] TEJ Behrens, MW Woolrich, M Jenkinson, H Johansen-Berg, RG Nunes, S Clare, PM Matthews,
JM Brady, and SM Smith. Characterization and propagation of uncertainty in diffusion-weighted MR
imaging. Magnetic Resonance in Medicine, 50(5):1077–1088, 2003. doi:10.1002/mrm.10609.

[9] TEJ Behrens, H Johansen Berg, Saad Jbabdi, MFS Rushworth, and MW Woolrich. Probabilistic
diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1):144–155,
2007. doi:10.1016/j.neuroimage.2006.09.018.

[10] Boris C Bernhardt, Zhang Chen, Yong He, Alan C Evans, and Neda Bernasconi. Graph-theoretical
analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal
lobe epilepsy. Cerebral Cortex, 21(9):2147–2157, 2011. doi:10.1093/cercor/bhq291.

[11] Jeremy C Biesanz, Carl F Falk, and Victoria Savalei. Assessing mediational models: testing
and interval estimation for indirect effects. Multivariate Behavioral Research, 45(4):661–701, 2010.
doi:10.1080/00273171.2010.498292.

[12] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):
P10008, 2008. doi:10.1088/1742-5468/2008/10/P10008.

159

https://doi.org/10.1515/9781400841356.503
https://doi.org/10.1080/00949650215733
https://doi.org/10.1080/00949650215733
https://doi.org/10.1186/1471-2105-10-405
https://doi.org/10.1002/hbm.23697
https://doi.org/10.1037/0022-3514.51.6.1173
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1093/cercor/bhq291
https://doi.org/10.1080/00273171.2010.498292
https://doi.org/10.1088/1742-5468/2008/10/P10008

160 BIBLIOGRAPHY

[13] Maria Eugenia Caligiuri, Gennarina Arabia, Gaetano Barbagallo, Angela Lupo, Maurizio Morelli,
Rita Nisticò, Fabiana Novellino, Andrea Quattrone, Maria Salsone, Basilio Vescio, et al. Structural
connectivity differences in essential tremor with and without resting tremor. Journal of Neurology,
pages 1–10, 2017. doi:10.1007/s00415-017-8553-5.

[14] Qingjiu Cao, Ni Shu, Li An, Peng Wang, Li Sun, Ming-Rui Xia, Jin-Hui Wang, Gao-Lang Gong, Yu-Feng
Zang, Yu-Feng Wang, et al. Probabilistic diffusion tractography and graph theory analysis reveal abnor-
mal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity
disorder. Journal of Neuroscience, 33(26):10676–10687, 2013. doi:10.1523/JNEUROSCI.4793-12.2013.

[15] Matteo Cinelli, Giovanna Ferraro, and Antonio Iovanella. Rich-club ordering and the dyadic effect:
two interrelated phenomena. Physica A: Statistical Mechanics and its Applications, 490:808–818, 2018.
doi:10.1016/j.physa.2017.08.122.

[16] Vittoria Colizza, Alessandro Flammini, M Angeles Serrano, and Alessandro Vespignani. Detecting
rich-club ordering in complex networks. Nature Physics, 2(2):110–115, 2006. doi:10.1038/nphys209.

[17] Robert W Cox. AFNI: software for analysis and visualization of functional magnetic resonance
neuroimages. Computers and Biomedical Research, 29(3):162–173, 1996. doi:10.1006/cbmr.1996.0014.

[18] R Cameron Craddock, G Andrew James, Paul E Holtzheimer, Xiaoping P Hu, and Helen S Mayberg. A
whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping,
33(8):1914–1928, 2012. doi:10.1002/hbm.21333.

[19] Jonathan J Crofts and Desmond J Higham. A weighted communicability measure applied to complex
brain networks. Journal of the Royal Society, Interface, 6(33):411–414, 2009. doi:10.1098/rsif.2008.0484.

[20] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. Inter-
Journal, Complex Systems, 1695(5):1–9, 2006.

[21] Z Cui, S Zhong, P Xu, Y He, and G Gong. PANDA: a pipeline toolbox for analyzing brain diffusion
images. Frontiers in Human Neuroscience, 7(7):42, 2013. doi:10.3389/fnhum.2013.00042.

[22] Dina R. Dajani, Catherine A. Burrows, Mary Beth Nebel, Stewart H. Mostofsky, Kathleen M.
Gates, and Lucina Q. Uddin. Parsing heterogeneity in autism spectrum disorder and attention-
deficit/hyperactivity disorder with individual connectome mapping. Brain Connectivity, 9(9):673–
691, 2019. doi:10.1089/brain.2019.0669. URL https://doi.org/10.1089/brain.2019.0669. PMID:
31631690.

[23] Anthony Christopher Davison and David Victor Hinkley. Bootstrap methods and their application,
volume 1. Cambridge University Press, 1997. doi:10.1017/CBO9780511802843.

[24] Marcel A de Reus and Martijn P van den Heuvel. Estimating false positives and negatives in brain
networks. NeuroImage, 70:402–409, 2013. doi:10.1016/j.neuroimage.2012.12.066.

[25] Manuel Delgado-Baquerizo, Peter B Reich, Chanda Trivedi, David J Eldridge, Sebastián Abades,
Fernando D Alfaro, Felipe Bastida, Asmeret A Berhe, Nick A Cutler, Antonio Gallardo, et al. Multiple
elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2):
210–220, 2020.

[26] Daniel DellaPosta and Victor Nee. Emergence of diverse and specialized knowledge in a metropolitan
tech cluster. Social Science Research, 86:102377, 2020.

[27] R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M.
Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany. An automated labeling system for
subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage,
31(3):968–980, 2006. doi:10.1016/j.neuroimage.2006.01.021.

https://doi.org/10.1007/s00415-017-8553-5
https://doi.org/10.1523/JNEUROSCI.4793-12.2013
https://doi.org/10.1016/j.physa.2017.08.122
https://doi.org/10.1038/nphys209
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1098/rsif.2008.0484
https://doi.org/10.3389/fnhum.2013.00042
https://doi.org/10.1089/brain.2019.0669
https://doi.org/10.1089/brain.2019.0669
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1016/j.neuroimage.2012.12.066
https://doi.org/10.1016/j.neuroimage.2006.01.021

BIBLIOGRAPHY 161

[28] Christophe Destrieux, Bruce Fischl, Anders Dale, and Eric Halgren. Automatic parcellation of
human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1):1–15, 2010.
doi:10.1016/j.neuroimage.2010.06.010.

[29] Nico UF Dosenbach, Binyam Nardos, Alexander L Cohen, Damien A Fair, Jonathan D Power, Jes-
sica A Church, Steven M Nelson, Gagan S Wig, Alecia C Vogel, Christina N Lessov-Schlaggar,
et al. Prediction of individual brain maturity using fMRI. Science, 329(5997):1358–1361, 2010.
doi:10.1126/science.1194144.

[30] Mark Drakesmith, Karen Caeyenberghs, A Dutt, G Lewis, AS David, and Derek K Jones. Overcoming
the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.
NeuroImage, 118:313–333, 2015. doi:10.1016/j.neuroimage.2015.05.011.

[31] Norman R Draper and David M Stoneman. Testing for the inclusion of variables in einear regression by
a randomisation technique. Technometrics, 8(4):695–699, 1966.

[32] Stephen J Eglen, Ben Marwick, Yaroslav O Halchenko, Michael Hanke, Shoaib Sufi, Padraig Gleeson,
R Angus Silver, Andrew P Davison, Linda Lanyon, Mathew Abrams, et al. Toward standard practices
for sharing computer code and programs in neuroscience. Nature Neuroscience, 20(6):770–773, 2017.
doi:10.1038/nn.4550.

[33] Marius Eidsaa and Eivind Almaas. S-core network decomposition: a generalization of k-core analysis
to weighted networks. Physical Review E, 88(6):062819, 2013. doi:10.1103/PhysRevE.88.062819.

[34] Ernesto Estrada and Naomichi Hatano. Communicability in complex networks. Physical Review E, 77
(3):036111, 2008. doi:10.1103/PhysRevE.77.036111.

[35] Ernesto Estrada, Desmond J Higham, and Naomichi Hatano. Communicability betweenness in
complex networks. Physica A: Statistical Mechanics and its Applications, 388(5):764–774, 2009.
doi:10.1016/j.physa.2008.11.011.

[36] Carl F Falk and Jeremy C Biesanz. Two cross-platform programs for inferences and interval es-
timation about indirect effects in mediational models. SAGE Open, 6(1):2158244015625445, 2016.
doi:10.1177/2158244015625445.

[37] Lingzhong Fan, Hai Li, Junjie Zhuo, Yu Zhang, Jiaojian Wang, Liangfu Chen, Zhengyi Yang, Congying
Chu, Sangma Xie, Angela R Laird, et al. The human brainnetome atlas: a new brain atlas based on
connectional architecture. Cerebral Cortex, 26(8):3508–3526, 2016. doi:10.1093/cercor/bhw157.

[38] Maria Feldmann, Ting Guo, Steven P Miller, Walter Knirsch, Raimund Kottke, Cornelia Hagmann,
Beatrice Latal, and Andras Jakab. Delayed maturation of the structural brain connectome in neonates
with congenital heart disease. bioRxiv, pages 1–17, 2020.

[39] Alex Fornito, Andrew Zalesky, and Edward Bullmore. Fundamentals of Brain Network Analysis.
Academic Press, 2016. ISBN 9780124081185.

[40] David Freedman and David Lane. A nonstochastic interpretation of reported significance levels. Journal
of Business and Economic Statistics, 1(4):292–298, 1983. doi:10.1080/07350015.1983.10509354. URL
https://www.tandfonline.com/doi/abs/10.1080/07350015.1983.10509354.

[41] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement. Softw.,
Pract. Exper., 21(11):1129–1164, 1991. doi:10.1002/spe.4380211102.

[42] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell, Essa Yacoub,
Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson, et al. A multi-modal
parcellation of human cerebral cortex. Nature, 536(7615):171–178, 2016.

[43] Gaolang Gong, Pedro Rosa-Neto, Felix Carbonell, Zhang J Chen, Yong He, and Alan C Evans. Age-
and gender-related differences in the cortical anatomical network. Journal of Neuroscience, 29(50):
15684–15693, 2009. doi:10.1523/JNEUROSCI.2308-09.2009.

https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1126/science.1194144
https://doi.org/10.1016/j.neuroimage.2015.05.011
https://doi.org/10.1038/nn.4550
https://doi.org/10.1103/PhysRevE.88.062819
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1016/j.physa.2008.11.011
https://doi.org/10.1177/2158244015625445
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1080/07350015.1983.10509354
https://www.tandfonline.com/doi/abs/10.1080/07350015.1983.10509354
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1523/JNEUROSCI.2308-09.2009

162 BIBLIOGRAPHY

[44] Evan M Gordon, Timothy O Laumann, Babatunde Adeyemo, Jeremy F Huckins, William M Kelley,
and Steven E Petersen. Generation and evaluation of a cortical area parcellation from resting-state
correlations. Cerebral Cortex, 26(1):288–303, 2016. doi:10.1093/cercor/bhu239.

[45] Roger Guimera and Luis A Nunes Amaral. Functional cartography of complex metabolic networks.
Nature, 433(7028):895–900, 2005. doi:10.1038/nature03288.

[46] Irwin Guttman. Linear Models: an Introduction. Krieger Pub Co, 1982.

[47] MohammadHossein Manuel Haqiqatkhah and Cees van Leeuwen. Adaptive rewiring in non-uniform
coupled oscillators. PsyArXiv, pages 1–45, 2020.

[48] Yong He, Zhang Chen, and Alan Evans. Structural insights into aberrant topological patterns of
large-scale cortical networks in alzheimer’s disease. Journal of Neuroscience, 28(18):4756–4766, 2008.

[49] Markus Hirschberger, Yue Qi, and Ralph E Steuer. Randomly generating portfolio-selection covariance
matrices with specified distributional characteristics. European Journal of Operational Research, 177
(3):1610–1625, 2007.

[50] Paul W Holland. Statistics and causal inference. Journal of the American Statistical Association, 81
(396):945–960, 1986.

[51] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack vulnerability of complex
networks. Physical Review E, 65(5):056109, 2002. doi:10.1103/PhysRevE.65.056109.

[52] Philipp Homan, Miklos Argyelan, Pamela DeRosse, Philip Szeszko, Juan A Gallego, Lauren Hanna,
Delbert Robinson, John M Kane, Todd Lencz, and Anil K Malhotra. Structural similarity net-
works predict clinical outcome in early-phase psychosis. Neuropsychopharmacology, 0:1–33, 2019.
doi:10.1038/s41386-019-0322-y. URL https://doi.org/10.1038/s41386-019-0322-y.

[53] SM Hadi Hosseini and Shelli R Kesler. Influence of choice of null network on small-world parameters of
structural correlation networks. PLoS One, 8(6):e67354, 2013. doi:10.1371/journal.pone.0067354.

[54] SM Hadi Hosseini, Fumiko Hoeft, and Shelli R Kesler. GAT: a graph-theoretical analysis toolbox for
analyzing between-group differences in large-scale structural and functional brain networks. PloS One,
7(7):e40709, 2012. doi:10.1371/journal.pone.0040709.

[55] Mark D Humphries and Kevin Gurney. Network ’small-world-ness’: a quantitative method for determin-
ing canonical network equivalence. PLoS One, 3(4):e0002051, 2008. doi:10.1371/journal.pone.0002051.

[56] Kosuke Imai, Luke Keele, and Dustin Tingley. A general approach to causal mediation analysis.
Psychological Methods, 15(4):309, 2010. doi:10.1037/a0020761.

[57] Kosuke Imai, Luke Keele, and Teppei Yamamoto. Identification, inference and sensitivity analysis for
causal mediation effects. Statistical Science, 25(1):51–71, 2010. doi:10.1214/10-STS321.

[58] Kosuke Imai, Luke Keele, Dustin Tingley, and Teppei Yamamoto. Unpacking the black box of causality:
learning about causal mechanisms from experimental and observational studies. American Political
Science Review, 105(4):765–789, 2011. doi:10.1017/S0003055411000414.

[59] Amy C Janes, Maya Zegel, Kyoko Ohashi, Jennifer Betts, Elena Molokotos, David Olson, Lauren Moran,
and Diego A Pizzagalli. Nicotine normalizes cortico-striatal connectivity in non-smoking individuals
with major depressive disorder. Neuropsychopharmacology, page 1, 2018. doi:10.1038/s41386-018-0069-x.

[60] Saad Jbabdi, MW Woolrich, JLR Andersson, and TEJ Behrens. A bayesian framework for global
tractography. NeuroImage, 37(1):116–129, 2007. doi:10.1016/j.neuroimage.2007.04.039.

[61] Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Woolrich, and Stephen M
Smith. FSL. NeuroImage, 62(2):782–790, 2012. doi:10.1016/j.neuroimage.2011.09.015.

https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1038/nature03288
https://doi.org/10.1103/PhysRevE.65.056109
https://doi.org/10.1038/s41386-019-0322-y
https://doi.org/10.1038/s41386-019-0322-y
https://doi.org/10.1371/journal.pone.0067354
https://doi.org/10.1371/journal.pone.0040709
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1037/a0020761
https://doi.org/10.1214/10-STS321
https://doi.org/10.1017/S0003055411000414
https://doi.org/10.1038/s41386-018-0069-x
https://doi.org/10.1016/j.neuroimage.2007.04.039
https://doi.org/10.1016/j.neuroimage.2011.09.015

BIBLIOGRAPHY 163

[62] Karen E Joyce, Paul J Laurienti, Jonathan H Burdette, and Satoru Hayasaka. A new measure of
centrality for brain networks. PLoS One, 5(8):e12200, 2010. doi:10.1371/journal.pone.0012200.

[63] David Kaufman and Robert Sweet. Contrast coding in least squares regression analysis. American
Educational Research Journal, 11(4):359–377, 1974. doi:10.2307/1162790.

[64] Luke Keele. Causal mediation analysis: warning! Assumptions ahead. American Journal of Evaluation,
36(4):500–513, 2015. doi:10.1177/1098214015594689.

[65] Daniel J King, Stefano Seri, Richard Beare, Cathy Catroppa, Vicki A Anderson, and Amanda G Wood.
Developmental divergence of structural brain networks as an indicator of future cognitive impairments
in childhood brain injury: executive functions. Developmental Cognitive Neuroscience, page 100762,
2020.

[66] Arno Klein and Jason Tourville. 101 labeled brain images and a consistent human cortical labeling
protocol. Frontiers in Neuroscience, 6, 2012. doi:10.3389/fnins.2012.00171.

[67] Eric D. Kolaczyk. Statistical Analysis of Network Data. Springer Series in Statistics. Springer-Verlag
New York, 2009. ISBN 978-0-387-88146-1. doi:10.1007/978-0-387-88146-1.

[68] Eric D Kolaczyk and Gábor Csárdi. Statistical analysis of network data with R, volume 65. Springer,
2014. doi:10.1007/978-0-387-88146-1.

[69] Marsh Königs, LW van Heurn, Roel Bakx, R Jeroen Vermeulen, J Carel Goslings, Bwee Tien Poll-The,
Marleen van der Wees, Coriene E Catsman-Berrevoets, Jaap Oosterlaan, and Petra JW Pouwels. The
structural connectome of children with traumatic brain injury. Human Brain Mapping, 38(7):3603–3614,
2017. doi:10.1002/hbm.23614.

[70] Michael H Kutner, Chris Nachtsheim, John Neter, and William Li. Applied linear statistical models.
McGraw-Hill Irwin, 2005. doi:10.2307/1271154.

[71] Athen Ma and Raúl J Mondragón. Rich-cores in networks. PloS One, 10(3):e0119678, 2015.
doi:10.1371/journal.pone.0119678.

[72] Jennifer K MacCormack, Andrea G Stein, Jian Kang, Kelly S Giovanello, Ajay B Satpute, and Kristen A
Lindquist. Affect in the aging brain: a neuroimaging meta-analysis of older vs. younger adult affective
experience and perception. Affective Science, pages 1–27, 2020.

[73] Patrick Mair. Analysis of fMRI Data. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
93177-7. doi:10.1007/978-3-319-93177-7 14. URL https://doi.org/10.1007/978-3-319-93177-7_

14.

[74] Nikos Makris, Jill M Goldstein, David Kennedy, Steven M Hodge, Verne S Caviness, Stephen V Faraone,
Ming T Tsuang, and Larry J Seidman. Decreased volume of left and total anterior insular lobule in
schizophrenia. Schizophrenia Research, 83(2):155–171, 2006. doi:10.1016/j.schres.2005.11.020.

[75] Anvita Gupta Malhotra, Sudha Singh, Mohit Jha, and Khushhali Menaria Pandey. A parametric tar-
getability evaluation approach for vitiligo proteome extracted through integration of gene ontologies and
protein interaction topologies. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
pages 1–14, 2018. ISSN 1545-5963. doi:10.1109/TCBB.2018.2835459.

[76] Irengbam Rocky Mangangcha, Md Zubbair Malik, Ömer Küçük, Shakir Ali, and RK Brojen Singh.
Identification of key regulators in prostate cancer from gene expression datasets of patients. bioRxiv,
page 643643, 2019.

[77] Bryan FJ Manly. Randomization and regression methods for testing for associations with geographical,
environmental and biological distances between populations. Population Ecology, 28(2):201–218, 1986.

[78] R Milo, N Kashtan, S Itzkovitz, MEJ Newman, and U Alon. On the uniform generation of random
graphs with prescribed degree sequences. eprint arXiv:cond-mat/0312028, 2003.

https://doi.org/10.1371/journal.pone.0012200
https://doi.org/10.2307/1162790
https://doi.org/10.1177/1098214015594689
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1007/978-0-387-88146-1
https://doi.org/10.1007/978-0-387-88146-1
https://doi.org/10.1002/hbm.23614
https://doi.org/10.2307/1271154
https://doi.org/10.1371/journal.pone.0119678
https://doi.org/10.1007/978-3-319-93177-7_14
https://doi.org/10.1007/978-3-319-93177-7_14
https://doi.org/10.1007/978-3-319-93177-7_14
https://doi.org/10.1016/j.schres.2005.11.020
https://doi.org/10.1109/TCBB.2018.2835459

164 BIBLIOGRAPHY

[79] Mark Newman. Networks: An Introduction. Oxford University Press, 2010. ISBN 0199206651.
doi:10.1093/acprof:oso/9780199206650.001.0001.

[80] Thomas E Nichols and Andrew P Holmes. Nonparametric permutation tests for functional neuroimaging:
a primer with examples. Human Brain Mapping, 15(1):1–25, 2002. doi:10.1002/hbm.1058.

[81] William Stafford Noble. A quick guide to organizing computational biology projects. PLoS Computational
Biology, 5(7):e1000424, 2009. doi:10.1371/journal.pcbi.1000424.

[82] Kyoko Ohashi, Carl M. Anderson, Elizabeth A. Bolger, Alaptagin Khan, Cynthia E. McGreenery,
and Martin H. Teicher. Susceptibility or resilience to maltreatment can be explained by specific
differences in brain network architecture. Biological Psychiatry, 85(8):690–702, 2019. ISSN 0006-3223.
doi:https://doi.org/10.1016/j.biopsych.2018.10.016. URL http://www.sciencedirect.com/science/

article/pii/S0006322318319784.

[83] Agust́ın Ostachuk. What is it like to be a crab? a complex network analysis of eucaridan evolution.
Evolutionary Biology, 46(2):179–206, 2019.

[84] John E Overall and Douglas K Spiegel. Concerning least squares analysis of experimental data.
Psychological Bulletin, 72(5):311, 1969. doi:10.1037/h0028109.

[85] Dimitrios Pantazis, Anand Joshi, Jintao Jiang, David W Shattuck, Lynne E Bernstein, Hanna Damasio,
and Richard M Leahy. Comparison of landmark-based and automatic methods for cortical surface
registration. NeuroImage, 49(3):2479–2493, 2010. doi:10.1016/j.neuroimage.2009.09.027.

[86] Jonathan D Power, Alexander L Cohen, Steven M Nelson, Gagan S Wig, Kelly Anne Barnes, Jessica A
Church, Alecia C Vogel, Timothy O Laumann, Fran M Miezin, Bradley L Schlaggar, et al. Functional net-
work organization of the human brain. Neuron, 72(4):665–678, 2011. doi:10.1016/j.neuron.2011.09.006.

[87] Kristopher J Preacher. Advances in mediation analysis: a survey and synthesis of new developments.
Annual Review of Psychology, 66:825–852, 2015. doi:10.1146/annurev-psych-010814-015258.

[88] Arnau Ramos-Prats, Julia Kölldorfer, Elena Paolo, Maximilian Zeidler, Gabriele Schmid, and
Francesco Ferraguti. An appraisal of the influence of the metabotropic glutamate 5 (mGlu5) re-
ceptor on sociability and anxiety. Frontiers in Molecular Neuroscience, 12:30, 2019. ISSN 1662-5099.
doi:10.3389/fnmol.2019.00030. URL https://www.frontiersin.org/article/10.3389/fnmol.2019.

00030.

[89] Neda Rashidi-Ranjbar, Tarek K Rajji, Sanjeev Kumar, Nathan Herrmann, Linda Mah, Alastair J
Flint, Corrine E Fischer, Meryl A Butters, Bruce G Pollock, Erin W Dickie, et al. Frontal-executive
and corticolimbic structural brain circuitry in older people with remitted depression, mild cognitive
impairment, Alzheimer’s dementia, and normal cognition. Neuropsychopharmacology, pages 1–14, 2020.

[90] Jaideep Ray, Ali Pinar, and Comandur Seshadhri. Are we there yet? When to stop a Markov chain while
generating random graphs. In International Workshop on Algorithms and Models for the Web-Graph,
pages 153–164. Springer, 2012. doi:10.1007/978-3-642-30541-2 12.

[91] Jonas Richiardi, Andre Altmann, Anna-Clare Milazzo, Catie Chang, M Mallar Chakravarty, Tobias
Banaschewski, Gareth J Barker, Arun LW Bokde, Uli Bromberg, Christian Büchel, et al. Correlated
gene expression supports synchronous activity in brain networks. Science, 348(6240):1241–1244, 2015.
doi:10.1126/science.1255905.

[92] Sally Richmond, Richard Beare, Katherine A. Johnson, Nicholas B. Allen, Marc L. Seal, and Sarah
Whittle. Structural covariance networks in children and their associations with maternal behaviors.
NeuroImage, 202:115965, 2019. ISSN 1053-8119. doi:https://doi.org/10.1016/j.neuroimage.2019.06.043.
URL http://www.sciencedirect.com/science/article/pii/S1053811919305403.

[93] Gerard Robert Ridgway. Statistical analysis for longitudinal MR imaging of dementia. PhD thesis,
UCL (University College London), 2009.

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1371/journal.pcbi.1000424
https://doi.org/https://doi.org/10.1016/j.biopsych.2018.10.016
http://www.sciencedirect.com/science/article/pii/S0006322318319784
http://www.sciencedirect.com/science/article/pii/S0006322318319784
https://doi.org/10.1037/h0028109
https://doi.org/10.1016/j.neuroimage.2009.09.027
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1146/annurev-psych-010814-015258
https://doi.org/10.3389/fnmol.2019.00030
https://www.frontiersin.org/article/10.3389/fnmol.2019.00030
https://www.frontiersin.org/article/10.3389/fnmol.2019.00030
https://doi.org/10.1007/978-3-642-30541-2_12
https://doi.org/10.1126/science.1255905
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.06.043
http://www.sciencedirect.com/science/article/pii/S1053811919305403

BIBLIOGRAPHY 165

[94] James A Roberts, Alistair Perry, Gloria Roberts, Philip B Mitchell, and Michael Breakspear.
Consistency-based thresholding of the human connectome. NeuroImage, 145:118–129, 2017.
doi:10.1016/j.neuroimage.2016.09.053.

[95] James M Robins and Sander Greenland. Identifiability and exchangeability for direct and indirect
effects. Epidemiology, pages 143–155, 1992. doi:10.1097/00001648-199203000-00013.

[96] ET Rolls, Marc Joliot, and Nathalie Tzourio-Mazoyer. Implementation of a new parcellation of
the orbitofrontal cortex in the automated anatomical labelling atlas. NeuroImage, 122:1–5, 2015.
doi:10.1016/j.neuroimage.2015.07.075.

[97] Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 66(5):688, 1974. doi:10.1037/h0037350.

[98] Donald B Rubin. Bayesian inference for causal effects: the role of randomization. The Annals of
Statistics, pages 34–58, 1978. doi:10.1214/aos/1176344064.

[99] Valentina Saba, Enrico Premi, Viviana Cristillo, Stefano Gazzina, Fernando Palluzzi, Orazio Zanetti,
Roberto Gasparotti, Alessandro Padovani, Barbara Borroni, and Mario Grassi. Brain connectivity
and information-flow breakdown revealed by a minimum spanning tree-based analysis of MRI data in
behavioral variant frontotemporal dementia. Frontiers in Neuroscience, 13:211, 2019. ISSN 1662-453X.
doi:10.3389/fnins.2019.00211. URL https://www.frontiersin.org/article/10.3389/fnins.2019.

00211.

[100] Manish Saggar, SM Hadi Hosseini, Jennifer L Bruno, Eve-Marie Quintin, Mira M Raman, Shelli R
Kesler, and Allan L Reiss. Estimating individual contribution from group-based structural correlation
networks. NeuroImage, 120:274–284, 2015. doi:10.1016/j.neuroimage.2015.07.006.

[101] Mohammed Saqr, Jalal Nouri, Henriikka Vartiainen, and Matti Tedre. Robustness and rich clubs in
collaborative learning groups: a learning analytics study using network science. Scientific Reports, 10
(1):1–16, 2020.

[102] Alexander Schaefer, Ru Kong, Evan M Gordon, Timothy O Laumann, Xi-Nian Zuo, Avram J Holmes,
Simon B Eickhoff, and BT Yeo. Local-global parcellation of the human cerebral cortex from intrinsic
functional connectivity MRI. Cerebral Cortex, pages 1–20, 2017. doi:10.1093/cercor/bhx179.

[103] Lianne H Scholtens, Marcel A de Reus, Siemon C de Lange, Ruben Schmidt, and Mar-
tijn P van den Heuvel. An mri von economo–koskinas atlas. NeuroImage, 170:249–256, 2018.
doi:10.1016/j.neuroimage.2016.12.069.

[104] Ronald C Serlin and Joel R Levin. Teaching how to derive directly interpretable coding schemes for
multiple regression analysis. Journal of Educational Statistics, 10(3):223–238, 1985. doi:10.2307/1164794.

[105] David W Shattuck and Richard M Leahy. Brainsuite: an automated cortical surface identification tool.
Medical Image Analysis, 6(2):129–142, 2002. doi:10.1016/S1361-8415(02)00054-3.

[106] David W Shattuck, Mubeena Mirza, Vitria Adisetiyo, Cornelius Hojatkashani, Georges Salamon,
Katherine L Narr, Russell A Poldrack, Robert M Bilder, and Arthur W Toga. Construction
of a 3d probabilistic atlas of human cortical structures. NeuroImage, 39(3):1064–1080, 2008.
doi:10.1016/j.neuroimage.2007.09.031.

[107] Xilin Shen, F Tokoglu, Xenios Papademetris, and R Todd Constable. Groupwise whole-brain parcel-
lation from resting-state fMRI data for network node identification. NeuroImage, 82:403–415, 2013.
doi:10.1016/j.neuroimage.2013.05.081.

[108] Stephen Smith, Mark Jenkinson, Christian Beckmann, Karla Miller, and Mark Woolrich.
Meaningful design and contrast estimability in FMRI. NeuroImage, 34(1):127–136, 2007.
doi:10.1016/j.neuroimage.2006.09.019.

https://doi.org/10.1016/j.neuroimage.2016.09.053
https://doi.org/10.1097/00001648-199203000-00013
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1037/h0037350
https://doi.org/10.1214/aos/1176344064
https://doi.org/10.3389/fnins.2019.00211
https://www.frontiersin.org/article/10.3389/fnins.2019.00211
https://www.frontiersin.org/article/10.3389/fnins.2019.00211
https://doi.org/10.1016/j.neuroimage.2015.07.006
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.neuroimage.2016.12.069
https://doi.org/10.2307/1164794
https://doi.org/10.1016/S1361-8415(02)00054-3
https://doi.org/10.1016/j.neuroimage.2007.09.031
https://doi.org/10.1016/j.neuroimage.2013.05.081
https://doi.org/10.1016/j.neuroimage.2006.09.019

166 BIBLIOGRAPHY

[109] AW Still and AP White. The approximate randomization test as an alternative to the F test in analysis
of variance. British Journal of Mathematical and Statistical Psychology, 34(2):243–252, 1981.

[110] Toshiyuki Tanimizu, Justin W Kenney, Emiko Okano, Kazune Kadoma, Paul W Frankland, and Satoshi
Kida. Functional connectivity of multiple brain regions required for the consolidation of social recognition
memory. Journal of Neuroscience, 37(15):4103–4116, 2017. doi:10.1523/JNEUROSCI.3451-16.2017.

[111] Martin H Teicher, Kyoko Ohashi, and Alaptagin Khan. Additional insights into the relationship between
brain network architecture and susceptibility and resilience to the psychiatric sequelae of childhood
maltreatment. Adversity and Resilience Science, 1:49–64, 2020.

[112] Qawi K Telesford, Karen E Joyce, Satoru Hayasaka, Jonathan H Burdette, and Paul J Laurienti. The
ubiquity of small-world networks. Brain Connectivity, 1(5):367–375, 2011. doi:10.1089/brain.2011.0038.

[113] Dustin Tingley, Teppei Yamamoto, Kentaro Hirose, Luke Keele, and Kosuke Imai. mediaton: R package
for causal mediation analysis. Journal of Statistical Software, 59(5):1–38, 2014. doi:10.18637/jss.v059.i05.

[114] Basant K Tiwary. Computational medicine: quantitative modeling of complex diseases. Briefings in
Bioinformatics, 0:1–12, 01 2019. ISSN 1477-4054. doi:10.1093/bib/bbz005. URL https://doi.org/10.

1093/bib/bbz005.

[115] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello, Olivier Etard,
Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated anatomical labeling of activations in
SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage,
15(1):273–289, 2002. doi:10.1006/nimg.2001.0978.

[116] Martijn van den Heuvel, Siemon de Lange, Andrew Zalesky, Caio Seguin, Thomas Yeo, and Ruben
Schmidt. Proportional thresholding in resting-state fMRI functional connectivity networks and con-
sequences for patient-control connectome studies: Issues and recommendations. NeuroImage, 2017.
doi:10.1016/j.neuroimage.2017.02.005.

[117] Martijn P. van den Heuvel, René C. W. Mandl, Cornelis J. Stam, René S. Kahn, and Hilleke E.
Hulshoff Pol. Aberrant frontal and temporal complex network structure in schizophrenia: a
graph theoretical analysis. Journal of Neuroscience, 30(47):15915–15926, 2010. ISSN 0270-6474.
doi:10.1523/JNEUROSCI.2874-10.2010. URL http://www.jneurosci.org/content/30/47/15915.

[118] Estefania Ruiz Vargas, Lindi M Wahl, et al. The gateway coefficient: a novel metric for identify-
ing critical connections in modular networks. The European Physical Journal B, 87(7):1–10, 2014.
doi:10.1140/epjb/e2014-40800-7.

[119] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth
edition, 2002. doi:10.1007/978-0-387-21706-2. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN
0-387-95457-0.

[120] Umesh M Venkatesan and Frank G Hillary. Functional connectivity within lateral posterior parietal
cortex in moderate to severe traumatic brain injury. Neuropsychology, 33(6):893, 2019.

[121] Fabien Viger and Matthieu Latapy. Efficient and simple generation of random simple con-
nected graphs with prescribed degree sequence. Journal of Complex Networks, 4(1):15–37, 2016.
doi:10.1093/comnet/cnv013.

[122] Defeng Wang, Lin Shi, Shangping Liu, Steve CN Hui, Yongjun Wang, Jack CY Cheng, and Winnie CW
Chu. Altered topological organization of cortical network in adolescent girls with idiopathic scoliosis.
PLoS One, 8:83767, 2013. doi:10.1371/journal.pone.0083767.

[123] Ruopeng Wang, Thomas Benner, Alma Gregory Sorensen, and Van Jay Wedeen. Diffusion toolkit: a
software package for diffusion imaging data processing and tractography. In Proc Intl Soc Mag Reson
Med, volume 15. Berlin, 2007.

https://doi.org/10.1523/JNEUROSCI.3451-16.2017
https://doi.org/10.1089/brain.2011.0038
https://doi.org/10.18637/jss.v059.i05
https://doi.org/10.1093/bib/bbz005
https://doi.org/10.1093/bib/bbz005
https://doi.org/10.1093/bib/bbz005
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2017.02.005
https://doi.org/10.1523/JNEUROSCI.2874-10.2010
http://www.jneurosci.org/content/30/47/15915
https://doi.org/10.1140/epjb/e2014-40800-7
https://doi.org/10.1007/978-0-387-21706-2
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1093/comnet/cnv013
https://doi.org/10.1371/journal.pone.0083767

BIBLIOGRAPHY 167

[124] Christopher G. Watson, Christian Stopp, Jane W. Newburger, and Michael J. Rivkin. Graph theory
analysis of cortical thickness networks in adolescents with d-transposition of the great arteries. Brain
and Behavior, 8(2):e00834, 2018. ISSN 2162-3279. doi:10.1002/brb3.834. URL http://dx.doi.org/

10.1002/brb3.834.

[125] Christopher G. Watson, Dana DeMaster, and Linda Ewing-Cobbs. Graph theory analysis of DTI
tractography in children with traumatic injury. NeuroImage. Clinical, 21:101673, 2019. ISSN 2213-
1582. doi:10.1016/j.nicl.2019.101673. URL http://www.sciencedirect.com/science/article/pii/

S2213158219300233.

[126] Duncan J Watts and Steven H Strogatz. Collective dynamics of ”small-world” networks. Nature, 393
(6684):440–442, 1998. doi:10.1515/9781400841356.301.

[127] Hadley Wickham. Tidy data. Journal of Statistical Software, 59(10), 2014. doi:10.18637/jss.v059.i10.

[128] Ben James Winer, Donald R Brown, and Kenneth M Michels. Statistical principles in experimental
design, volume 2. McGraw-Hill New York, 1971. doi:10.2307/3172747.

[129] Anderson M Winkler, Gerard R Ridgway, Matthew A Webster, Stephen M Smith, and Thomas E
Nichols. Permutation inference for the general linear model. NeuroImage, 92:381–397, 2014.
doi:10.1016/j.neuroimage.2014.01.060.

[130] Mingrui Xia, Jinhui Wang, Yong He, et al. Brainnet viewer: a network visualization tool for human
brain connectomics. PLoS One, 8(7):e68910, 2013. doi:10.1371/journal.pone.0068910.

[131] Yihui Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd
edition, 2015. doi:10.1201/b15166. URL http://yihui.name/knitr/. ISBN 978-1498716963.

[132] Chao-Gan Yan and Yu-Feng Zang. DPARSF: a MATLAB toolbox for ”pipeline” data analysis of
resting-state fMRI. Frontiers in Systems Neuroscience, 4:13, 2010. doi:10.3389/fnsys.2010.00013.

[133] Andrew Zalesky, Alex Fornito, and Edward T Bullmore. Network-based statistic: identifying differences
in brain networks. NeuroImage, 53(4):1197–1207, 2010. doi:10.1016/j.neuroimage.2010.06.041.

[134] Andrew Zalesky, Alex Fornito, and Ed Bullmore. On the use of correlation as a measure of network
connectivity. NeuroImage, 60(4):2096–2106, 2012. doi:10.1016/j.neuroimage.2012.02.001.

[135] Shi Zhou and Raúl J Mondragón. The rich-club phenomenon in the internet topology. IEEE Commu-
nications Letters, 8(3):180–182, 2004. doi:10.4018/978-1-59140-993-9.ch066.

https://doi.org/10.1002/brb3.834
http://dx.doi.org/10.1002/brb3.834
http://dx.doi.org/10.1002/brb3.834
https://doi.org/10.1016/j.nicl.2019.101673
http://www.sciencedirect.com/science/article/pii/S2213158219300233
http://www.sciencedirect.com/science/article/pii/S2213158219300233
https://doi.org/10.1515/9781400841356.301
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.2307/3172747
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1201/b15166
http://yihui.name/knitr/
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2012.02.001
https://doi.org/10.4018/978-1-59140-993-9.ch066

	List of Tables
	Preface
	I Introductory Material
	Installation and Requirements
	Getting Help and Other Resources
	Getting data from Freesurfer and FSL

	II brainGraph Basics
	Overview of the brainGraph Package
	Getting started

	III Graph Creation
	Structural covariance networks
	Overview
	Import the data
	Model residuals
	Data checking
	Correlation Matrix and Graph Creation
	Getting measures of interest
	Long and wide data tables

	Tractography and fMRI
	Setting up
	Import, normalize, and filter matrices for all subjects
	Graph creation
	Graph- and vertex-level measures
	Example commands

	IV Group Analyses: GLM-based
	Vertex-wise group analysis (GLM)
	Function arguments
	Return object
	Tutorial: design matrix coding
	Examples
	Permutation testing
	Plotting LM diagnostics
	Create a graph of the results
	Plotting a graph of the results

	Multi-threshold permutation correction
	Background
	Function arguments
	Return value
	Code example
	Plotting the statistics
	Create a graph of the results
	Plotting a graph of the results

	Network-based statistic (NBS)
	Background
	Function arguments
	Return value
	Code example
	Creating a graph of the results
	Plotting the results
	Testing

	Graph- and vertex-level mediation analysis
	Background
	Notation
	Function arguments
	Return value
	Code example
	Create a graph of the results
	Plot a graph of the results
	Benchmarks

	V Group Analyses: Other
	Random graphs, small world, and rich-club
	Bootstrapping and permutation testing
	Further analysis

	VI Visualization
	GUI and other plotting functionality

	Appendices
	Attributes created by set_brainGraph_attr
	GLM Statistics
	Functions for generic data
	Benchmarks
	Computing environment

